THE SPECTRUM ASYMPTOTICS FOR THE DIRICHLET PROBLEM IN THE CASE OF THE BIHARMONIC OPERATOR IN A DOMAIN WITH HIGHLY INDENTED BOUNDARY

被引:15
作者
Kozlov, V. A. [1 ]
Nazarov, S. A. [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Russian Acad Sci, Inst Mech Engn Problems, St Petersburg 199178, Russia
基金
瑞典研究理事会;
关键词
Biharmonic operator; Dirichlet problem; asymptotic expansions of eigenvalues; eigenoscillations of the Kirchhoff plate; rapid oscillation and nonregular perturbation of the boundary; COEFFICIENTS;
D O I
10.1090/S1061-0022-2011-01178-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity gamma that describes the depth O(epsilon(gamma)) of irregularity (epsilon is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.
引用
收藏
页码:941 / 983
页数:43
相关论文
共 60 条
[41]  
Mel'nik TA., 1997, JMath Sci, V85, P2326, DOI [10.1007/BF02355841, DOI 10.1007/BF02355841]
[42]  
MELNYK TA, 1994, CR ACAD SCI I-MATH, V319, P1343
[43]  
Mikhlin SG., 1964, VARIATIONAL METHODS
[44]  
Mohammadi B, 1998, INT J NUMER METH FL, V27, P169, DOI 10.1002/(SICI)1097-0363(199801)27:1/4<169::AID-FLD657>3.0.CO
[45]  
2-4
[46]   CONVERGENCE OF CONVEX SETS AND OF SOLUTIONS OF VARIATIONAL INEQUALITIES [J].
MOSCO, U .
ADVANCES IN MATHEMATICS, 1969, 3 (04) :510-&
[47]   RAYLEIGHS CONJECTURE ON THE PRINCIPAL FREQUENCY OF THE CLAMPED PLATE [J].
NADIRASHVILI, NS .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :1-10
[48]   Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries [J].
Nazarov, S. A. .
IZVESTIYA MATHEMATICS, 2008, 72 (03) :509-564
[49]   Eigenoscillations of an elastic body with a rough surface [J].
Nazarov, S. A. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (06) :861-870
[50]   DIRICHLET PROBLEM IN AN ANGULAR DOMAIN WITH RAPIDLY OSCILLATING BOUNDARY: MODELING OF THE PROBLEM AND ASYMPTOTICS OF THE SOLUTION [J].
Nazarov, S. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (02) :297-326