THE SPECTRUM ASYMPTOTICS FOR THE DIRICHLET PROBLEM IN THE CASE OF THE BIHARMONIC OPERATOR IN A DOMAIN WITH HIGHLY INDENTED BOUNDARY

被引:15
作者
Kozlov, V. A. [1 ]
Nazarov, S. A. [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Russian Acad Sci, Inst Mech Engn Problems, St Petersburg 199178, Russia
基金
瑞典研究理事会;
关键词
Biharmonic operator; Dirichlet problem; asymptotic expansions of eigenvalues; eigenoscillations of the Kirchhoff plate; rapid oscillation and nonregular perturbation of the boundary; COEFFICIENTS;
D O I
10.1090/S1061-0022-2011-01178-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity gamma that describes the depth O(epsilon(gamma)) of irregularity (epsilon is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.
引用
收藏
页码:941 / 983
页数:43
相关论文
共 60 条
[1]  
ACHDOU Y, 1995, CR ACAD SCI I-MATH, V320, P541
[2]   The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains [J].
Adolfsson, V ;
Pipher, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) :137-190
[3]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[4]  
Amirat Y., 2006, Comput.Math.Math.Phys., V46, P97, DOI [10.1134/S0965542506010118, DOI 10.1134/S0965542506010118]
[5]  
[Anonymous], 2001, MATH SURVEYS MONOGR
[6]  
[Anonymous], J MATH SCI
[7]  
[Anonymous], 1992, Transl. Math. Monogr.
[8]  
[Anonymous], 1968, Oeuvres, De Jacqes Hadamard Tom II, Centre National de la Recherche Scientifiques
[9]  
[Anonymous], 2000, OPER THEORY ADV APPL
[10]  
[Anonymous], PROGR NONLINEAR DIFF