Fat sub-Riemannian symmetric spaces: the nilpotent case

被引:1
|
作者
Almeida, D. M. [1 ]
Falbel, E. [2 ,3 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, Uberlandia, MG, Brazil
[2] Univ Paris 06, Inst Math Jussieu, Paris, France
[3] Ouragan INRIA, Paris, France
来源
ARKIV FOR MATEMATIK | 2018年 / 56卷 / 02期
关键词
sub-Riemannian geometry; sub-symmetric space; fat distribution; two-step nilpotent Lie algebra; CLASSIFICATION; GEOMETRY;
D O I
10.4310/ARKIV.2018.v56.n2.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we start the classification of strongly bracket-generated sub-symmetric spaces. We prove a structure theorem and analyze the nilpotent case.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [21] Sub-Riemannian homogeneous spaces in dimensions 3 and 4
    Falbel, E
    Gorodski, C
    GEOMETRIAE DEDICATA, 1996, 62 (03) : 227 - 252
  • [22] ON SEMI-SYMMETRIC METRIC CONNECTION IN SUB-RIEMANNIAN MANIFOLD
    Han, Yanling
    Fu, Fengyun
    Zhao, Peibiao
    TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (04): : 373 - 384
  • [23] Sub-Riemannian geometry
    Kupka, I
    ASTERISQUE, 1997, (241) : 351 - 380
  • [24] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263
  • [25] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Huang, Yonghong
    Sun, Shanzhong
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 91 - 114
  • [26] Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
    Yonghong Huang
    Shanzhong Sun
    Frontiers of Mathematics in China, 2020, 15 : 91 - 114
  • [27] Nilpotent (n, n(n+1)/2) sub-Riemannian problem
    Myasnichenko, O
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2006, 12 (01) : 87 - 95
  • [28] Riemannian and Sub-Riemannian Geodesic Flows
    Godoy Molina, Mauricio
    Grong, Erlend
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1260 - 1273
  • [29] Riemannian and Sub-Riemannian Geodesic Flows
    Mauricio Godoy Molina
    Erlend Grong
    The Journal of Geometric Analysis, 2017, 27 : 1260 - 1273
  • [30] Polynomial Sub-Riemannian Differentiability on Carnot–Carathéodory Spaces
    M. B. Karmanova
    Siberian Mathematical Journal, 2018, 59 : 860 - 869