Quantifying, characterizing, and controlling information flow in ultracold atomic gases

被引:127
作者
Haikka, P. [1 ]
McEndoo, S. [1 ,2 ]
De Chiara, G. [3 ,4 ]
Palma, G. M. [5 ,6 ]
Maniscalco, S. [1 ,2 ]
机构
[1] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FIN-20014 Turku, Finland
[2] Heriot Watt Univ, SUPA, EPS Phys, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Autonoma Barcelona, E-08193 Bellaterra, Spain
[4] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
[5] Univ Palermo, NEST Ist Nanosci CNR, I-90123 Palermo, Italy
[6] Univ Palermo, Dipartimento Fis, I-90123 Palermo, Italy
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
关键词
D O I
10.1103/PhysRevA.84.031602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).
引用
收藏
页数:5
相关论文
共 28 条
[11]   Collective decoherence of cold atoms coupled to a Bose-Einstein condensate [J].
Cirone, M. A. ;
De Chiara, G. ;
Palma, G. M. ;
Recati, A. .
NEW JOURNAL OF PHYSICS, 2009, 11
[12]   On the conundrum of deriving exact solutions from approximate master equations [J].
Doll, Roland ;
Zueco, David ;
Wubs, Martijn ;
Kohler, Sigmund ;
Haenggi, Peter .
CHEMICAL PHYSICS, 2008, 347 (1-3) :243-249
[13]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[14]   Dark-state cooling of atoms by superfluid immersion [J].
Griessner, A. ;
Daley, A. J. ;
Clark, S. R. ;
Jaksch, D. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[15]   Effective method of calculating the non-Markovianity N for single-channel open systems [J].
He, Zhi ;
Zou, Jian ;
Li, Lin ;
Shao, Bin .
PHYSICAL REVIEW A, 2011, 83 (01)
[16]   Non-Markovianity of the damped Jaynes-Cummings model with detuning [J].
Li, Jun-Gang ;
Zou, Jian ;
Shao, Bin .
PHYSICAL REVIEW A, 2010, 81 (06)
[17]   Quantum Fisher information flow and non-Markovian processes of open systems [J].
Lu, Xiao-Ming ;
Wang, Xiaoguang ;
Sun, C. P. .
PHYSICAL REVIEW A, 2010, 82 (04)
[18]   Quantum computers and dissipation [J].
Palma, GM ;
Suominen, KA ;
Ekert, AK .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1946) :567-584
[19]   Tonks-Girardeau gas of ultracold atoms in an optical lattice [J].
Paredes, B ;
Widera, A ;
Murg, V ;
Mandel, O ;
Fölling, S ;
Cirac, I ;
Shlyapnikov, GV ;
Hänsch, TW ;
Bloch, I .
NATURE, 2004, 429 (6989) :277-281
[20]   Non-Markovian quantum jumps [J].
Piilo, Jyrki ;
Maniscalco, Sabrina ;
Harkonen, Kari ;
Suominen, Kalle-Antti .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)