The Bogolyubov-Mitropolsky method is used to find approximate periodic solutions to the system of nonlinear equations that describes the large-amplitude vibrations of cylindrical shells interacting with a fluid flow. Three quantitatively different cases are studied: (i) the shell is subject to hydrodynamic pressure and external periodical loading, (ii) the shell executes parametric vibrations due to the pulsation of the fluid velocity, and (iii) the shell experiences both forced and parametric vibrations. For each of these cases, the first-order amplitude-frequency characteristic is derived and stability criteria for stationary vibrations are established.