Improved MR to CT Synthesis for PET/MR Attenuation Correction Using Imitation Learning

被引:9
作者
Klaser, Kerstin [1 ,2 ]
Varsavsky, Thomas [1 ,2 ]
Markiewicz, Pawel [1 ,2 ]
Vercauteren, Tom [2 ]
Atkinson, David [4 ]
Thielemans, Kris [3 ]
Hutton, Brian [3 ]
Cardoso, M. Jorge [2 ]
Ourselin, Sebastien [2 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[3] UCL, Inst Nucl Med, London, England
[4] UCL, Ctr Med Imaging, London, England
来源
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2019 | 2019年 / 11827卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-32778-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to synthesise Computed Tomography images commonly known as pseudo CT, or pCT - from MRI input data is commonly assessed using an intensity-wise similarity, such as an L-2-norm between the ground truth CT and the pCT. However, given that the ultimate purpose is often to use the pCT as an attenuation map (mu-map) in Positron Emission Tomography Magnetic Resonance Imaging (PET/MRI), minimising the error between pCT and CT is not necessarily optimal. The main objective should be to predict a pCT that, when used as mu-map, reconstructs a pseudo PET (pPET) which is as close as possible to the gold standard PET. To this end, we propose a novel multi-hypothesis deep learning framework that generates pCTs by minimising a combination of the pixel-wise error between pCT and CT and a proposed metric-loss that itself is represented by a convolutional neural network (CNN) and aims to minimise subsequent PET residuals. The model is trained on a database of 400 paired MR/CT/PET image slices. Quantitative results show that the network generates pCTs that seem less accurate when evaluating the Mean Absolute Error on the pCT (69.68HU) compared to a baseline CNN (66.25HU), but lead to significant improvement in the PET reconstruction - 115a.u. compared to baseline 140a.u.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 12 条
  • [1] Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies
    Burgos, Ninon
    Cardoso, M. Jorge
    Thielemans, Kris
    Modat, Marc
    Pedemonte, Stefano
    Dickson, John
    Barnes, Anna
    Ahmed, Rebekah
    Mahoney, Colin J.
    Schott, Jonathan M.
    Duncan, John S.
    Atkinson, David
    Arridge, Simon R.
    Hutton, Brian F.
    Ourselin, Sebastien
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) : 2332 - 2341
  • [2] Fidon L., 2017, ABS170903485 CORR
  • [3] Deep CT to MR Synthesis Using Paired and Unpaired Data
    Jin, Cheng-Bin
    Kim, Hakil
    Liu, Mingjie
    Jung, Wonmo
    Joo, Seongsu
    Park, Eunsik
    Ahn, Young Saem
    Han, In Ho
    Lee, Jae Il
    Cui, Xuenan
    [J]. SENSORS, 2019, 19 (10)
  • [4] A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients
    Ladefoged, Claes N.
    Law, Ian
    Anazodo, Udunna
    St Lawrence, Keith
    Izquierdo-Garcia, David
    Catana, Ciprian
    Burgos, Ninon
    Cardoso, M. Jorge
    Ourselin, Sebastien
    Hutton, Brian
    Merida, Ines
    Costes, Nicolas
    Hammers, Alexander
    Benoit, Didier
    Holm, Soren
    Juttukonda, Meher
    An, Hongyu
    Cabello, Jorge
    Lukas, Mathias
    Nekolla, Stephan
    Ziegler, Sibylle
    Fenchel, Matthias
    Jakoby, Bjoern
    Casey, Michael E.
    Benzinger, Tammie
    Hojgaard, Liselotte
    Hansen, Adam E.
    Andersen, Flemming L.
    [J]. NEUROIMAGE, 2017, 147 : 346 - 359
  • [5] On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task
    Li, Wenqi
    Wang, Guotai
    Fidon, Lucas
    Ourselin, Sebastien
    Cardoso, M. Jorge
    Vercauteren, Tom
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 348 - 360
  • [6] NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis
    Markiewicz, Pawel J.
    Ehrhardt, Matthias J.
    Erlandsson, Kjell
    Noonan, Philip J.
    Barnes, Anna
    Schott, Jonathan M.
    Atkinson, David
    Arridge, Simon R.
    Hutton, Brian F.
    Ourselin, Sebastien
    [J]. NEUROINFORMATICS, 2018, 16 (01) : 95 - 115
  • [7] Fast free-form deformation using graphics processing units
    Modat, Marc
    Ridgway, Gerard R.
    Taylor, Zeike A.
    Lehmann, Manja
    Barnes, Josephine
    Hawkes, David J.
    Fox, Nick C.
    Ourselin, Sebastien
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 98 (03) : 278 - 284
  • [8] Positron emission tomography/magnetic resonance imaging: The next generation of multimodality imaging?
    Pichler, Bernd J.
    Wehrl, Hans F.
    Kolb, Armin
    Judenhofer, Martin S.
    [J]. SEMINARS IN NUCLEAR MEDICINE, 2008, 38 (03) : 199 - 208
  • [9] Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses
    Rupprecht, Christian
    Laina, Iro
    DiPietro, Robert
    Baust, Maximilian
    Tombari, Federico
    Navab, Nassir
    Hager, Gregory D.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3611 - 3620
  • [10] Wolterink Jelmer M., 2017, Simulation and Synthesis in Medical Imaging. Second International Workshop, SASHIMI 2017. Held in Conjunction with MICCAI 2017. Proceedings: LNCS 10557, P14, DOI 10.1007/978-3-319-68127-6_2