Inverse problem to identify a space-dependent diffusivity coefficient in a generalized subdiffusion equation from final data

被引:5
作者
Janno, Jaan [1 ]
Kasemets, Kairi [1 ]
Kinash, Nataliia [1 ]
机构
[1] Tallinn Univ Technol, Dept Cybernet, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
inverse problem; final overdetermination; generalized fractional evolution equation; TIME-FRACTIONAL DIFFUSION; RANDOM-WALKS; UNIQUENESS;
D O I
10.3176/proc.2022.1.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An inverse problem to determine a space-dependent diffusivity coefficient in a one-dimensional generalized time fractional diffusion equation from final data is considered. The global uniqueness and local existence and stability of the solution to this problem is proved. Proof of these statements is based on the fixed-point principle and previously obtained results regarding an inverse source problem for a generalized subdiffusion equation.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1990, ENCY MATH APPL
[2]  
[Anonymous], 1980, Integral Equations and Operator Theory
[3]  
Baeumer B., 2005, Fract. Calc. Appl. Anal, V8, P371
[4]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[5]   Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation [J].
Gajda, Janusz ;
Magdziarz, Marcin .
PHYSICAL REVIEW E, 2010, 82 (01)
[6]   UNIQUENESS FOR AN INVERSE PROBLEM FOR A SEMILINEAR TIME-FRACTIONAL DIFFUSION EQUATION [J].
Janno, Jaan ;
Kasemets, Kairi .
INVERSE PROBLEMS AND IMAGING, 2017, 11 (01) :125-149
[7]   Global uniqueness in an inverse problem for time fractional diffusion equations [J].
Kian, Y. ;
Oksanen, L. ;
Soccorsi, E. ;
Yamamoto, M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) :1146-1170
[8]  
Kinash N., 2020, THESIS TALINN U TECH
[9]   Inverse Problems for a Generalized Subdiffusion Equation with Final Overdetermination [J].
Kinash, Nataliia ;
Janno, Jaan .
MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (02) :236-262
[10]   Inverse problems for a perturbed time fractional diffusion equation with final overdetermination [J].
Kinash, Nataliia ;
Janno, Jaan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) :1925-1943