SYMMETRY ANALYSIS AND SOME NEW EXACT SOLUTIONS OF THE (2+1)-DIMENSIONAL BURGERS EQUATIONS

被引:3
作者
El-Bialy, F. [1 ]
Latif, M. S. Abdel [1 ]
Elsaid, A. [1 ]
机构
[1] Mansoura Univ, Fac Engn, Math & Engn Phys Dept, PO 35516, Mansoura, Egypt
来源
ACTA PHYSICA POLONICA B | 2017年 / 48卷 / 11期
关键词
PERIODIC-WAVE SOLUTIONS; KUDRYASHOV-SINELSHCHIKOV EQUATION; VARIABLE-COEFFICIENTS; GORDON EQUATIONS; EXPANSION METHOD; KDV EQUATION;
D O I
10.5506/APhysPolB.48.2031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Lie point symmetry analysis method is used to investigate the (2+1)-dimensional Burgers equations. We have obtained the optimal system of Lie subalgebras. Some new exact solutions for the (2+1)-dimensional Burgers equations are obtained.
引用
收藏
页码:2031 / 2043
页数:13
相关论文
共 28 条
[11]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231
[12]   Some exact solutions of KdV equation with variable coefficients [J].
Latif, M. S. Abdel .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1783-1786
[13]  
Lebedev NN., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[14]   New exact traveling and non-traveling wave solutions for (2+1)-dimensional Burgers equation [J].
Lin, Songqing ;
Wang, Chuanjian ;
Dai, Zhengde .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) :3105-3110
[15]   Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation [J].
Liu Xi-Zhong ;
Yu Jun ;
Ren Bo ;
Yang Jian-Rong .
CHINESE PHYSICS B, 2015, 24 (01)
[16]   New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation [J].
Ma Hong-Cai ;
Ge Dong-Jie ;
Yu Yao-Dong .
CHINESE PHYSICS B, 2008, 17 (12) :4344-4353
[17]   THE REDUCTION PROBLEM AND THE INVERSE SCATTERING METHOD [J].
MIKHAILOV, AV .
PHYSICA D, 1981, 3 (1-2) :73-117
[18]  
Olver PJ., 2000, Applications of Lie Groups to Differential Equations
[19]   SIMILARITY SOLUTIONS TO BURGERS' EQUATION IN TERMS OF SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS [J].
Ozis, Turgut ;
Aslan, Ismail .
ACTA PHYSICA POLONICA B, 2017, 48 (07) :1349-1369
[20]   The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations [J].
Parkes, EJ ;
Duffy, BR ;
Abbott, PC .
PHYSICS LETTERS A, 2002, 295 (5-6) :280-286