SYMMETRY ANALYSIS AND SOME NEW EXACT SOLUTIONS OF THE (2+1)-DIMENSIONAL BURGERS EQUATIONS

被引:3
作者
El-Bialy, F. [1 ]
Latif, M. S. Abdel [1 ]
Elsaid, A. [1 ]
机构
[1] Mansoura Univ, Fac Engn, Math & Engn Phys Dept, PO 35516, Mansoura, Egypt
来源
ACTA PHYSICA POLONICA B | 2017年 / 48卷 / 11期
关键词
PERIODIC-WAVE SOLUTIONS; KUDRYASHOV-SINELSHCHIKOV EQUATION; VARIABLE-COEFFICIENTS; GORDON EQUATIONS; EXPANSION METHOD; KDV EQUATION;
D O I
10.5506/APhysPolB.48.2031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Lie point symmetry analysis method is used to investigate the (2+1)-dimensional Burgers equations. We have obtained the optimal system of Lie subalgebras. Some new exact solutions for the (2+1)-dimensional Burgers equations are obtained.
引用
收藏
页码:2031 / 2043
页数:13
相关论文
共 28 条
[1]  
Abdel Kader A. H., 2017, INT J APPL COMPUT MA, V3, P1163
[2]  
Abdel Kader A.H., ASIAN EUROP IN PRESS, DOI [10.1142/S1793557118500407, DOI 10.1142/S1793557118500407]
[3]  
Arrigo D. J., 2015, Symmetry Analysis of Differential Equations: An Introduction
[4]   The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations [J].
Chen, Yong ;
Yan, Zhenya .
CHAOS SOLITONS & FRACTALS, 2006, 29 (04) :948-964
[5]   The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation [J].
He, Bin ;
Meng, Qing ;
Long, Yao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4137-4148
[6]  
Hirota R., 2004, The direct method in soliton theory
[7]   New Jacobi elliptic function-like solutions for the general KdV equation with variable coefficients [J].
Hong, Baojian ;
Lu, Dianchen .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :1594-1600
[8]  
Hong KZ, 2003, COMMUN THEOR PHYS, V39, P393
[9]   Analysis of non-linear Klein-Gordon equations using Lie symmetry [J].
Khalique, Chaudry Masood ;
Biswas, Anjan .
APPLIED MATHEMATICS LETTERS, 2010, 23 (11) :1397-1400
[10]   New exact soliton-like solutions and special soliton-like structures of the (2+1) dimensional Burgers equation [J].
Kong, FL ;
Chen, SD .
CHAOS SOLITONS & FRACTALS, 2006, 27 (02) :495-500