Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol

被引:58
|
作者
Kreuzer, Mark P. [1 ]
Quidant, Romain [1 ]
Salvador, J. -Pablo [2 ]
Marco, M. -Pilar [2 ]
Badenes, Goncal [1 ]
机构
[1] ICFO Inst Photon Sci, Mediterranean Technol Pk, Castelldefels 08860, Spain
[2] CSIC, Dept Biol Organ Chem, ES-08034 Barcelona, Spain
关键词
localized surface plasmon resonance; stanozolol; colloid; nanoparticles; biosensor;
D O I
10.1007/s00216-008-2022-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small organic molecule-the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved (> 97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (< 5% RSD) and allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca. 2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon resonance methods and offers great potential for miniaturization and development of multiplexed devices.
引用
收藏
页码:1813 / 1820
页数:8
相关论文
共 50 条
  • [31] Sensitivity enhancement of surface plasmon resonance biosensor with colloidal gold
    Choi K.
    Youn H.
    Kim K.
    Choi J.
    Biotechnology and Bioprocess Engineering, 1998, 3 (1) : 19 - 23
  • [32] Exposed-core localized surface plasmon resonance biosensor
    Islam, Md Saiful
    Islam, Mohammad Rakibul
    Sultana, Jakeya
    Dinovitser, Alex
    Ng, Brian W-H
    Abbott, Derek
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (08) : 2306 - 2311
  • [33] Localized surface plasmon resonance biosensor integrated with microfluidic chip
    Chengjun Huang
    Kristien Bonroy
    Gunter Reekmans
    Wim Laureyn
    Katarina Verhaegen
    Iwijn De Vlaminck
    Liesbet Lagae
    Gustaaf Borghs
    Biomedical Microdevices, 2009, 11 : 893 - 901
  • [34] Localized surface plasmon resonance biosensor integrated with microfluidic chip
    Huang, Chengjun
    Bonroy, Kristien
    Reekmans, Gunter
    Laureyn, Wim
    Verhaegen, Katarina
    De Vlaminck, Iwijn
    Lagae, Liesbet
    Borghs, Gustaaf
    BIOMEDICAL MICRODEVICES, 2009, 11 (04) : 893 - 901
  • [35] A Nanodisk Array Based Localized Surface Plasmon Resonance (LSPR) Sensor Fabricated by Laser Interference Lithography
    Lin, Chi-Chen
    Chen, Jhih-Siang
    Wu, Chien-Lin
    Wang, Lon A.
    Huang, Nien-Tsu
    2019 14TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE-NEMS 2019), 2019, : 217 - 220
  • [36] Developing a Transducer Based on Localized Surface Plasmon Resonance (LSPR) of Gold Nano Structures for Nanobiosensor Applications
    Turhan, Adil B.
    Ataman, Demet
    Cakmakyapan, Semih
    Mutlu, Mehmet
    Ozbay, Ekmel
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS II, 2013, 543 : 393 - +
  • [37] Localized surface plasmon resonance (LSPR) excitation on single silver nanoring with nanoscale surface roughness
    Yu, Jianhai
    Gao, Yanan
    Zhang, Wenzheng
    Wang, Peijie
    Fang, Yan
    Yang, Longkun
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 317
  • [38] A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance
    Xu, Yichao
    Xiong, Meng
    Yan, Hui
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 336
  • [39] A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection
    Fauzia, Vivi
    Nurlely
    Imawan, Cuk
    Narayani, Ni Made Manik Savitri
    Putri, Anita Eka
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 257 : 1128 - 1133
  • [40] Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance
    Lin, Tsao-Jen
    Chung, Mon-Fu
    BIOSENSORS & BIOELECTRONICS, 2009, 24 (05): : 1213 - 1218