Light-triggered action potentials and changes in quantum efficiency of photosystem II in Anthoceros cells

被引:14
作者
Pikulenko, MM
Bulychev, AA
机构
[1] Moscow MV Lomonosov State Univ, Ctr Ecol, Moscow 119992, Russia
[2] Moscow MV Lomonosov State Univ, Fac Biol, Dept Biophys, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
Anthoceros; membrane potential; action potential; chloroplasts; plasma membrane; chlorophyll fluorescence; nonphotochemical quenching;
D O I
10.1007/s11183-005-0087-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Capillary microelectrodes and pulse amplitude-modulated microfluorometry were used to study light-triggered changes in cell membrane potential, chlorophyll fluorescence, and photochemical yield of PSII in chloroplasts of a hornwort Anthoceros sp. Theaction potential was generated by illuminating the plant samC, pie for a few seconds. It was accompanied by a reversible decrease in quantum efficiency of PSII and by nonphotochemical quenching of fluorescence that continued as long as 10 min after the light stimulus. The presence of ammonium ions (2 mM) enhanced the amplitude and prolonged the duration of dark changes of fluorescence parameters in accordance with the reported increase in duration and amplitude of the light-triggered action potential in the presence of NH4+. A rapid retardation of PSII activity within the first seconds of illumination was also evident from absorbance changes at 8 10 nm reflecting the redox conversions of chlorophyll P700. The PSII-dependent stage of reduction in the induction curves of P700 absorbance was strongly suppressed, and the amplitudes of signals induced by white and far-red light (717 nm) differed insignificantly. It is concluded that a short-term irradiation triggers the generation of Delta pH at the thylakoid membranes, which is accompanied by inhibition of the plasma membrane H+ pump and by reversible inactivation of PSII due to increased thermal dissipation of chlorophyll excitations.
引用
收藏
页码:584 / 590
页数:7
相关论文
empty
未找到相关数据