Chiral Hall Effect in Noncollinear Magnets from a Cyclic Cohomology Approach

被引:48
作者
Lux, Fabian R. [1 ,2 ,3 ,4 ]
Freimuth, Frank [1 ,2 ,3 ]
Bluegel, Stefan [1 ,2 ,3 ]
Mokrousov, Yuriy [1 ,2 ,3 ,5 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[3] JARA, D-52425 Julich, Germany
[4] Rhein Westfal TH Aachen, Dept Phys, D-52056 Aachen, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
ROOM-TEMPERATURE; BERRY PHASE; SKYRMIONS; DRIVEN; FIELDS;
D O I
10.1103/PhysRevLett.124.096602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the emergence of an anomalous Hall effect in chiral magnetic textures which is neither proportional to the net magnetization nor to the well-known emergent magnetic field that is responsible for the topological Hall effect. Instead, it appears already at linear order in the gradients of the magnetization texture and exists for one-dimensional magnetic textures such as domain walls and spin spirals. It receives a natural interpretation in the language of Alain Connes' noncommutative geometry. We show that this chiral Hall effect resembles the familiar topological Hall effect in essential properties while its phenomenology is distinctly different. Our findings make the reinterpretation of experimental data necessary, and offer an exciting twist in engineering the electrical transport through magnetic skyrmions.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Spin-Hall Topological Hall Effect in Highly Tunable Pt/Ferrimagnetic-Insulator Bilayers [J].
Ahmed, Adam S. ;
Lee, Aidan J. ;
Bagues, Nuria ;
McCullian, Brendan A. ;
Thabt, Ahmed M. A. ;
Perrine, Avery ;
Wu, Po-Kuan ;
Rowland, James R. ;
Randeria, Mohit ;
Hammel, P. Chris ;
McComb, David W. ;
Yang, Fengyuan .
NANO LETTERS, 2019, 19 (08) :5683-5688
[2]  
[Anonymous], 1999, Journal of High Energy Physics
[3]   TIME-REVERSAL AND MANY-BODY NONEQUILIBRIUM GREEN-FUNCTIONS [J].
BANYAI, L ;
ELSAYED, K .
ANNALS OF PHYSICS, 1994, 233 (02) :165-181
[4]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[5]   Spin gauge fields: From Berry phase to topological spin transport and Hall effects [J].
Bliokh, KY ;
Bliokh, YP .
ANNALS OF PHYSICS, 2005, 319 (01) :13-47
[6]   Topological Hall effect and Berry phase in magnetic nanostructures [J].
Bruno, P ;
Dugaev, VK ;
Taillefumier, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :096806-1
[7]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[8]   General theory of the topological Hall effect in systems with chiral spin textures [J].
Denisov, K. S. ;
Rozhansky, I., V ;
Averkiev, N. S. ;
Lahderanta, E. .
PHYSICAL REVIEW B, 2018, 98 (19)
[9]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[10]   Magnetic skyrmions: advances in physics and potential applications [J].
Fert, Albert ;
Reyren, Nicolas ;
Cros, Vincent .
NATURE REVIEWS MATERIALS, 2017, 2 (07)