MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL SYSTEM

被引:5
作者
Fang, Yanqin [1 ]
Zhang, Jihui [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
关键词
Schrodinger-Maxwell; Ljusternik-Schnirelmann theory; multiple solutions; POSITIVE SOLUTIONS; POISSON PROBLEM; SEMICLASSICAL STATES; BOUND-STATES; EQUATIONS; POTENTIALS; MOLECULES; SPHERES; WAVES; ATOMS;
D O I
10.3934/cpaa.2011.10.1267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following system -epsilon(2)Delta v + V(x)v + psi(x)v = v(p), x is an element of R(3), -Delta psi = 1/epsilon v(2), lim(vertical bar x vertical bar -> infinity)psi(x) = 0, x is an element of R(3), where epsilon > 0, p is an element of (3, 5), V is positive potential. We relate the number of solutions with topology of the set where V attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 24 条
[1]  
Alves C.O., 2005, NODEA-NONLINEAR DIFF, V12, P437
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC SYSTEMS VIA LOCAL MOUNTAIN PASS METHOD [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) :1745-1758
[3]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[4]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[5]  
[Anonymous], 1997, Topol. Methods Nonlinear Anal, DOI DOI 10.12775/TMNA.1997.019
[6]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[7]  
AZZOLLINI A, 2009, B UNIONE MAT ITAL, V9, P93
[8]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[9]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[10]   Standing waves for nonlinear Schrodinger equations with singular potentials [J].
Byeon, Jaeyoung ;
Wang, Zhi-Qiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :943-958