Stable multiscale bases and local error estimation for elliptic problems

被引:68
|
作者
Dahlke, S
Dahmen, W
Hochmuth, R
Schneider, R
机构
[1] RHEIN WESTFAL TH AACHEN,INST GEOMETRIE & PRAKT MATH,D-52056 AACHEN,GERMANY
[2] FREE UNIV BERLIN,INST MATH 1,FACHBEREICH MATH & INFORMAT,D-14195 BERLIN,GERMANY
[3] TH DARMSTADT,FACHBEREICH MATH,D-64289 DARMSTADT,GERMANY
关键词
stable multiscale bases; norm equivalences; elliptic operator equations; Galerkin schemes; a-posteriori error estimators; convergence of adaptive schemes;
D O I
10.1016/S0168-9274(96)00060-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the analysis of adaptive multiscale techniques for the solution of a wide class of elliptic operator equations covering, in principle, singular integral as well as partial differential operators. The central objective is to derive reliable and efficient a-posteriori error estimators for Galerkin schemes which are based on stable multiscale bases. It is shown that the locality of corresponding multiresolution processes combined with certain norm equivalences involving weighted sequence norms of wavelet coefficients leads to adaptive space refinement strategies which are guaranteed to converge in a wide range of cases, again including operators of negative order.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 50 条
  • [41] Even-odd goal-oriented a posteriori error estimation for elliptic problems
    Adjerid, S
    Salim, M
    APPLIED NUMERICAL MATHEMATICS, 2005, 55 (04) : 384 - 402
  • [42] A stable RBF partition of unity local method for elliptic interface problems in two dimensions
    Gholampour, Faranak
    Hesameddini, Esmail
    Taleei, Ameneh
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 123 (123) : 220 - 232
  • [43] PROBLEMS WITH VARIATIONALLY STABLE ELLIPTIC LIMITS
    FUJIWARA, D
    SHIMAKUR.N
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1970, 49 (01): : 1 - &
  • [44] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [45] Analysis of the heterogeneous multiscale method for elliptic homogenization problems
    E, WN
    Ming, PG
    Zhang, PW
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) : 121 - 156
  • [46] NUMERICAL HOMOGENIZATION OF ELLIPTIC MULTISCALE PROBLEMS BY SUBSPACE DECOMPOSITION
    Kornhuber, Ralf
    Yserentant, Harry
    MULTISCALE MODELING & SIMULATION, 2016, 14 (03): : 1017 - 1036
  • [47] A multiscale cell boundary element method for elliptic problems
    Jeon, Youngmok
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (11) : 2801 - 2813
  • [48] Edge multiscale methods for elliptic problems with heterogeneous coefficients
    Fu, Shubin
    Chung, Eric
    Li, Guanglian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 228 - 242
  • [49] Multiscale mortar mixed methods for heterogeneous elliptic problems
    Arbogast, Todd
    Tao, Zhen
    Xiao, Hailong
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 9 - 21
  • [50] AN ADAPTIVE DISCONTINUOUS GALERKIN MULTISCALE METHOD FOR ELLIPTIC PROBLEMS
    Elfverson, Daniel
    Georgoulis, Emmanuil H.
    Malqvist, Axel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (03): : 747 - 765