Comparison of genetic and clinical aspects in patients with acute myeloid leukemia and myelodysplastic syndromes all with more than 50% of bone marrow erythropoietic cells
Background The World Health Organization separates acute erythroid leukemia (erythropoiesis in >= 50% of nucleated bone marrow cells; >= 20% myeloblasts of non-erythroid cells) from other entities with increased erythropoiesis - acute myeloid leukemia with myelodysplasia-related changes (>= 20% myeloblasts of all nucleated cells) or myelodysplastic syndromes - and subdivides acute erythroid leukemia into erythroleukemia and pure erythroid leukemia subtypes. We aimed to investigate the biological/genetic justification for the different categories of myeloid malignancies with increased erythropoiesis (>= 50% of bone marrow cells). Design and Methods We investigated 212 patients (aged 18.5-88.4 years) with acute myeloid leukemia or myelodysplastic syndromes characterized by 50% or more erythropoiesis: 108 had acute myeloid leukemia (77 with acute erythroid leukemia, corresponding to erythroid/myeloid erythroleukemia, 7 with pure erythroid leukemia, 24 with acute myeloid leukemia with myelodysplasia-related changes) and 104 had myelodysplastic syndromes. Morphological and chromosome banding analyses were performed in all cases; subsets of cases were analyzed by polymerase chain reaction and immunophenotyping. Results Unfavorable karyotypes were more frequent in patients with acute myeloid leukemia than in those with myelodysplastic syndromes (42.6% versus 13.5%; P<0.0001), but their frequency did not differ significantly between patients with acute erythroid leukemia (39.0%), pure erythroid leukemia (57.1%), and acute myeloid leukemia with myelodysplasia-related changes (50.0%). The incidence of molecular mutations did not differ significantly between the different categories. The 2-year overall survival rate was better for patients with myelodysplastic syndromes than for those with acute myeloid leukemia (P<0.0001), without significant differences across the different acute leukemia subtypes. The 2-year overall survival rate was worse in patients with unfavorable karyotypes than in those with intermediate risk karyotypes (P<0.0001). In multivariate analysis, only myelodysplastic syndromes versus acute myeloid leukemia (P=0.021) and cytogenetic risk category (P=0.002) had statistically significant effects on overall survival. Conclusions The separation of acute myeloid leukemia and myelodysplastic syndromes with 50% or more erythropoietic cells has clinical relevance, but it might be worth discussing whether to replace the subclassifications of different subtypes of acute erythroid leukemia and acute myeloid leukemia with myelodysplasia-related changes by the single entity, acute myeloid leukemia with increased erythropoiesis >= 50%.