Construction of covariant differential calculi on quantum homogeneous spaces

被引:9
作者
Hermisson, U [1 ]
机构
[1] Univ Leipzig, Fachbereich Math, D-04109 Leipzig, Germany
关键词
noncommutative differential calculus; covariant first-order differential calculus; quantum homogeneous spaces;
D O I
10.1023/A:1007527507045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method of constructing covariant differential calculi on a quantum homogeneous space is devised. The function algebra X of the quantum homogeneous space is assumed to be a left coideal of a coquasitriangular Hopf algebra H and to contain the coefficients of any matrix over H which is the two-sided inverse of one with entries in X. The method is based on partial derivatives. For the quantum sphere of Podles and the quantizations of symmetric spaces due to Noumi, Dijkhuizen and Sugitani, the construction produces the subcalculi of the standard bicovariant calculus on the quantum group. Mathematics Subject Classifications (1991): 17B37, 46L87, 81R50.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 22 条
[1]   CLASSIFICATION OF 3-DIMENSIONAL COVARIANT DIFFERENTIAL CALCULI ON PODLES QUANTUM SPHERES AND ON RELATED SPACES [J].
APEL, J ;
SCHMUDGEN, K .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (01) :25-36
[2]   Quantum homogeneous spaces as quantum quotient spaces [J].
Brzezinski, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2388-2399
[3]   Some remarks on the construction of quantum symmetric spaces [J].
Dijkhuizen, MS .
ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) :59-80
[4]   QUANTUM HOMOGENEOUS SPACES, DUALITY AND QUANTUM 2-SPHERES [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
GEOMETRIAE DEDICATA, 1994, 52 (03) :291-315
[5]  
DIJKHUIZEN MS, IN PRESS AM MATH SOC
[6]  
HECKENBERGER I, IN PRESS J REINE ANG
[7]   DIFFERENTIAL-CALCULUS ON QUANTIZED SIMPLE LIE-GROUPS [J].
JURCO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (03) :177-186
[8]  
Klimyk A., 1997, QUANTUM GROUPS THEIR
[9]  
KOROGODSKY LI, 1992, LECT NOTES MATH, V1510, P56
[10]   FAITHFUL FLATNESS OF HOPF-ALGEBRAS [J].
MASUOKA, A ;
WIGNER, D .
JOURNAL OF ALGEBRA, 1994, 170 (01) :156-164