WELL-POSEDNESS AND ANALYTICITY FOR GENERALIZED NAVIER-STOKES EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES

被引:10
|
作者
Azanzal, Achraf [1 ]
Allalou, Chakir [1 ]
Abbassi, Adil [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab LMACS, FST Beni Mellal, Beni Mellal, Morocco
来源
关键词
Analytic solution; Fourier-Besov-Morrey spaces; Generalized Navier-Stokes equations; Global well-posedness;
D O I
10.23952/jnfa.2021.24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem of the generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood Paley theory, we obtain global well-posedness results and prove the existence and uniqueness of analytic solutions with small initial data.
引用
收藏
页数:14
相关论文
共 50 条