Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations

被引:27
作者
Liu, Suile [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Upper doubling; Geometrically doubling; Dominating function; Atom; Hardy space; Calderon-Zygmund operator; Metric measure space; H-1; BMO; THEOREM;
D O I
10.1016/j.jmaa.2011.07.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a metric measure space satisfying the upper doubling and the geometrically doubling conditions in the sense of T. Hytonen. In this paper, the authors prove that the boundedness of a Calderon-Zygmund operator T on L-2(mu) is equivalent to either of the boundedness of T from the atomic Hardy space H-1(mu) to L-1,L-infinity(mu) or from H-1(mu) to L-1(mu). To this end, the authors first establish an interpolation result that a sublinear operator which is bounded from H-1(mu) to L-1,L-infinity(mu) and from L-p0(mu) to L-p0,L-infinity(mu) for some p(0) is an element of (1, infinity) is also bounded on L-p(mu) for all p is an element of (1, p(0)). A main tool used in this paper is the Calderon-Zygmund decomposition in this setting established by B.T. Anh and X.T. Duong. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 50 条
  • [21] Boundedness of Multilinear Calderon-Zygmund Operators on Grand Variable Herz Spaces
    Nafis, Hammad
    Rafeiro, Humberto
    Zaighum, Muhammad Asad
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [22] Real-Variable Characterizations of Hardy-Lorentz Spaces on Spaces of Homogeneous Type with Applications to Real Interpolation and Boundedness of Calderon-Zygmund Operators
    Zhou, Xilin
    He, Ziyi
    Yang, Dachun
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 182 - 260
  • [23] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood-Paley Characterizations with Applications to Boundedness of Calderon-Zygmund Operators
    Yan, Xian Jie
    He, Zi Yi
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) : 1133 - 1184
  • [24] The Boundedness for Commutators of Anisotropic Calderon-Zygmund Operators
    Li, Jinxia
    Li, Baode
    He, Jianxun
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 45 - 58
  • [25] AN INTERPOLATION THEOREM FOR SUBLINEAR OPERATORS ON NON-HOMOGENEOUS METRIC MEASURE SPACES
    Lin, Haibo
    Yang, Dongyong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02) : 168 - 179
  • [26] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [27] A two weight inequality for Calderon-Zygmund operators on spaces of homogeneous type with applications
    Duong, Xuan Thinh
    Li, Ji
    Sawyer, Eric T.
    Vempati, Manasa N.
    Wick, Brett D.
    Yang, Dongyong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [28] Boundedness of certain commutators over non-homogeneous metric measure spaces
    Lin, Haibo
    Wu, Suqing
    Yang, Dachun
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (02) : 187 - 218
  • [29] Hardy Spaces, Regularized BMO Spaces and the Boundedness of Caldern-Zygmund Operators on Non-homogeneous Spaces
    The Anh Bui
    Duong, Xuan Thinh
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 895 - 932
  • [30] BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HARDY SPACES Hp OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Li, Haoyuan
    Lin, Haibo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 347 - 364