Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations

被引:27
作者
Liu, Suile [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Upper doubling; Geometrically doubling; Dominating function; Atom; Hardy space; Calderon-Zygmund operator; Metric measure space; H-1; BMO; THEOREM;
D O I
10.1016/j.jmaa.2011.07.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a metric measure space satisfying the upper doubling and the geometrically doubling conditions in the sense of T. Hytonen. In this paper, the authors prove that the boundedness of a Calderon-Zygmund operator T on L-2(mu) is equivalent to either of the boundedness of T from the atomic Hardy space H-1(mu) to L-1,L-infinity(mu) or from H-1(mu) to L-1(mu). To this end, the authors first establish an interpolation result that a sublinear operator which is bounded from H-1(mu) to L-1,L-infinity(mu) and from L-p0(mu) to L-p0,L-infinity(mu) for some p(0) is an element of (1, infinity) is also bounded on L-p(mu) for all p is an element of (1, p(0)). A main tool used in this paper is the Calderon-Zygmund decomposition in this setting established by B.T. Anh and X.T. Duong. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 22 条
[1]  
Anh B.T., ARXIV10091274
[2]  
[Anonymous], 1971, Lecture Notes in Mathematics
[3]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[4]   A remark on the boundedness of Calderon-Zygmund operators in non-homogeneous spaces [J].
Fu, Xiao Li ;
Hu, Guo En ;
Yang, Da Chun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (03) :449-456
[5]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[6]  
Heinenon J, 2001, LECT ANAL METRIC SPA
[7]   New atomic characterization of H1 space with non-doubling measures and its applications [J].
Hu, G ;
Meng, Y ;
Yang, DC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :151-171
[8]  
Hu GE, 2009, REV MAT IBEROAM, V25, P595
[9]  
Hytonen T., CANAD J MAT IN PRESS
[10]  
Hytonen T., ARXIV10083831