Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images
被引:10
|
作者:
Xiong, Kangni
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Xiong, Kangni
[1
]
Jiang, Jinbao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Jiang, Jinbao
[1
]
Pan, Yingyang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Pan, Yingyang
[1
]
Yang, Yande
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Yang, Yande
[1
]
Chen, Xuhui
论文数: 0引用数: 0
h-index: 0
机构:
Satellite Applicat Ctr Ecol & Environm, Beijing 100094, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Chen, Xuhui
[2
]
Yu, Zijian
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Yu, Zijian
[1
]
机构:
[1] China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Satellite Applicat Ctr Ecol & Environm, Beijing 100094, Peoples R China
The leakage of underground natural gas has a negative impact on the environment and safety. Trace amounts of gas leak concentration cannot reach the threshold for direct detection. The low concentration of natural gas can cause changes in surface vegetation, so remote sensing can be used to detect micro-leakage indirectly. This study used infrared thermal imaging combined with deep learning methods to detect natural gas micro-leakage areas and revealed the different canopy temperature characteristics of four vegetation varieties (grass, soybean, corn and wheat) under natural gas stress from 2017 to 2019. The correlation analysis between natural gas concentration and canopy temperature showed that the canopy temperature of vegetation increased under gas stress. A GoogLeNet model with Bilinear pooling (GLNB) was proposed for the classification of different vegetation varieties under natural gas micro-leakage stress. Further, transfer learning is used to improve the model training process and classification efficiency. The proposed methods achieved 95.33% average accuracy, 95.02% average recall and 95.52% average specificity of stress classification for four vegetation varieties. Finally, based on Grad-Cam and the quasi-circular spatial distribution rules of gas stressed areas, the range of natural gas micro-leakage stress areas under different vegetation and stress durations was detected. Taken together, this study demonstrated the potential of using thermal infrared imaging and deep learning in identifying gas-stressed vegetation, which was of great value for detecting the location of natural gas micro-leakage.
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Pan, Xiaoquan
Jiang, Jinbao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Jiang, Jinbao
Xiao, Yiming
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Pan, Xiaoquan
Jiang, Jinbao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Jiang, Jinbao
Yuan, Deshuai
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Ran, Weiwei
Jiang, Jinbao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Ding 11 Xueyuan Rd, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Jiang, Jinbao
Wang, Xinda
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Wang, Xinda
Liu, Ziwei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Du, Ying
Jiang, Jinbao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Jiang, Jinbao
Liu, Ziwei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
Liu, Ziwei
Pan, Yingyang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
机构:
Prince Sattam Bin Abdulaziz Univ, Coll Business Adm, MIS Dept, Alkharj 11942, Saudi ArabiaRiphah Int Univ, Riphah Coll Comp, Faisalabad Campus, Faisalabad, Pakistan