Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer

被引:78
|
作者
Zhu, Linghua [1 ]
Tang, Ho Lun [1 ]
Barron, George S. [1 ]
Calderon-Vargas, F. A. [1 ]
Mayhall, Nicholas J. [2 ]
Barnes, Edwin [1 ]
Economou, Sophia E. [1 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
关键词
Iterative methods;
D O I
10.1103/PhysRevResearch.4.033029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the standard QAOA Ansatz is not optimal, there is no systematic approach for finding better Ansatze. We address this problem by developing an iterative version of QAOA that is problem tailored, and which can also be adapted to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA, while simultaneously reducing the required number of CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of shortcuts to adiabaticity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Graph decomposition techniques for solving combinatorial optimization problems with variational quantum algorithms
    Ponce, Moises
    Herrman, Rebekah
    Lotshaw, Phillip C.
    Powers, Sarah
    Siopsis, George
    Humble, Travis
    Ostrowski, James
    QUANTUM INFORMATION PROCESSING, 2025, 24 (02)
  • [22] Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems
    Shirai, Tatsuhiko
    Togawa, Nozomu
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5 : 1 - 14
  • [23] Approximate Solutions of Combinatorial Problems via Quantum Relaxations
    Fuller, Bryce
    Hadfield, Charles
    Glick, Jennifer R.
    Imamichi, Takashi
    Itoko, Toshinari
    Thompson, Richard J.
    Jiao, Yang
    Kagele, Marna M.
    Blom-Schieber, Adriana W.
    Raymond, Rudy
    Mezzacapo, Antonio
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5 : 1 - 18
  • [24] Multiscale quantum approximate optimization algorithm
    Zou, Ping
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [25] Shortcuts to the quantum approximate optimization algorithm
    Chai, Yahui
    Han, Yong-Jian
    Wu, Yu-Chun
    Li, Ye
    Dou, Menghan
    Guo, Guo-Ping
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [26] A Delegated Quantum Approximate Optimization Algorithm
    Wang, Yuxun
    Quan, Junyu
    Li, Qin
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 804 - 808
  • [27] Counterdiabaticity and the quantum approximate optimization algorithm
    Wurtz, Jonathan
    Love, Peter
    QUANTUM, 2022, 6
  • [28] On the universality of the quantum approximate optimization algorithm
    M. E. S. Morales
    J. D. Biamonte
    Z. Zimborás
    Quantum Information Processing, 2020, 19
  • [29] Benchmarking the quantum approximate optimization algorithm
    Madita Willsch
    Dennis Willsch
    Fengping Jin
    Hans De Raedt
    Kristel Michielsen
    Quantum Information Processing, 2020, 19
  • [30] Analog quantum approximate optimization algorithm
    Barraza, Nancy
    Barrios, Gabriel Alvarado
    Peng, Jie
    Lamata, Lucas
    Solano, Enrique
    Albarran-Arriagada, Francisco
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)