Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer

被引:100
作者
Zhu, Linghua [1 ]
Tang, Ho Lun [1 ]
Barron, George S. [1 ]
Calderon-Vargas, F. A. [1 ]
Mayhall, Nicholas J. [2 ]
Barnes, Edwin [1 ]
Economou, Sophia E. [1 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
关键词
Iterative methods;
D O I
10.1103/PhysRevResearch.4.033029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the standard QAOA Ansatz is not optimal, there is no systematic approach for finding better Ansatze. We address this problem by developing an iterative version of QAOA that is problem tailored, and which can also be adapted to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA, while simultaneously reducing the required number of CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of shortcuts to adiabaticity.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Reachability Deficits in Quantum Approximate Optimization [J].
Akshay, V ;
Philathong, H. ;
Morales, M. E. S. ;
Biamonte, J. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (09)
[2]   Improving Variational Quantum Optimization using CVaR [J].
Barkoutsos, Panagiotis Kl. ;
Nannicini, Giacomo ;
Robert, Anton ;
Tavernelli, Ivano ;
Woerner, Stefan .
QUANTUM, 2020, 4
[3]   Transitionless quantum driving [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[4]   Obstacles to Variational Quantum Optimization from Symmetry Protection [J].
Bravyi, Sergey ;
Kliesch, Alexander ;
Koenig, Robert ;
Tang, Eugene .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[5]   Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems [J].
Claeys, Pieter W. ;
Pandey, Mohit ;
Sels, Dries ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[6]   Adiabatic population transfer with control fields [J].
Demirplak, M ;
Rice, SA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (46) :9937-9945
[7]   Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems [J].
Deng, Jiawen ;
Wang, Qing-hai ;
Liu, Zhihao ;
Haenggi, Peter ;
Gong, Jiangbin .
PHYSICAL REVIEW E, 2013, 88 (06)
[8]  
Crooks GE, 2018, Arxiv, DOI [arXiv:1811.08419, 10.48550/ARXIV.1811.08419]
[9]  
Farhi, ARXIV
[10]  
Farhi E., 2014, 56291PHQC10 MIT