Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: Without solitons

被引:138
作者
Xu, Jian [1 ]
Fan, Engui [2 ,3 ,4 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Fudan Univ, Sch Math Sci, Inst Math, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Fokas-Lenells equation; Initial value problem; Deift-Zhou method; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1016/j.jde.2015.02.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Deift-Zhou method to obtain, in the solitonless sector, the leading order asymptotic of the solution to the Cauchy problem of the Fokas-Lenells equation as t ->+infinity on the full-line. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1098 / 1148
页数:51
相关论文
共 25 条
[1]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[3]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[4]   LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION [J].
De Monvel, Anne Boutet ;
Kostenko, Aleksey ;
Shepelsky, Dmitry ;
Teschl, Gerald .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1559-1588
[5]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[6]  
Deift P. A., 1993, Important Developments in Soliton Theory, P181
[7]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[8]   SOLITON GENERATION FOR INITIAL-BOUNDARY-VALUE PROBLEMS [J].
FOKAS, AS ;
ITS, AR .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3117-3120
[9]   Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent [J].
Grunert, Katrin ;
Teschl, Gerald .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (03) :287-324
[10]  
Its A. R., 1981, Sov. Math. Dokl, V24, P452