Unconditional Energy Stability Analysis of a Second Order Implicit-Explicit Local Discontinuous Galerkin Method for the Cahn-Hilliard Equation

被引:29
作者
Song, Huailing [1 ]
Shu, Chi-Wang [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Implicit-explicit; Second-order; Stability analysis; The Cahn-Hilliard equation; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; TIME-STEPPING STRATEGY; ALLEN-CAHN; SCHEME; MODELS;
D O I
10.1007/s10915-017-0497-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present a second-order in time implicit-explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn-Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn-Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn-Hilliard system modeled by the IMEX LDG method can inherit the nonlinear stability of the continuous model. We apply a stabilization technique and prove unconditional energy stability of our scheme. Numerical experiments are performed to validate the analysis. Computational efficiency can be significantly enhanced by using this IMEX LDG method with a large time step.
引用
收藏
页码:1178 / 1203
页数:26
相关论文
共 27 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   Conservative nonlinear difference scheme for the Cahn-Hilliard equation - II [J].
Choo, SM ;
Chung, SK ;
Kim, KI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) :229-243
[8]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[9]   ANALYSIS OF A LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR TIME-DEPENDENT FOURTH-ORDER PROBLEMS [J].
Dong, Bo ;
Shu, Chi-Wang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3240-3268
[10]   Computation of Two-Phase Biomembranes with Phase Dependent Material Parameters Using Surface Finite Elements [J].
Elliott, Charles M. ;
Stinner, Bjoern .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (02) :325-360