Temperature-dependent evolution of grain growth in mullite fibres

被引:22
|
作者
Schmücker, M [1 ]
Schneider, H [1 ]
Mauer, T [1 ]
Clauss, B [1 ]
机构
[1] Inst Text Chem & Chem Fibres, D-73770 Denkendorf, Germany
关键词
grain size; fibres; mullite; electron microscopy; grain growth;
D O I
10.1016/j.jeurceramsoc.2004.08.020
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mullite grain size characteristics of four different alumino silicate fibres heat-treated between 1400 and 1700 degrees C in a time frame of 0.5-100h have been determined. Mullite grain sizes show little change up to 1500 degrees C though the grain microstructure develops from mosaic-type to facetted. Above 1500 degrees C grain growth kinetics follow the empirical law D-1/n-D-0(1/n)=kt(D-0)= initial grain size, D= grain size after annealing, 1/n= grain growth exponent, k= reaction constant, and t=firing time). Between 1500 and 1600 degrees C the grain growth exponent is remarkably low (1/n=1/12) but above 1600 degrees C grain growth exponents reach normal values of approximate to 1/3. The vacancy drag model has been used to explain the complex grain growth behaviour of mullite. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3249 / 3256
页数:8
相关论文
共 50 条
  • [31] Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    张梁唯
    严雅丽
    王佳乐
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (02) : 140 - 145
  • [32] Temperature-dependent growth direction of ultrathin ZnSe nanowires
    Cai, Yuan
    Chan, Siu Keung
    Sou, Iam Keong
    Chan, Yn Tai
    Su, Dang Sheng
    Wang, Ning
    SMALL, 2007, 3 (01) : 111 - 115
  • [33] Temperature-dependent dehydration of sol-gel-derived mullite precursors: An FTIR spectroscopic study
    Voll, D
    Beran, A
    Schneider, H
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1998, 18 (08) : 1101 - 1106
  • [34] Mathematical modeling of the temperature-dependent growth of living systems
    Department of Mathematics, Institute of Basic Science Khandari, Agra-282002, India
    Int. J. Eng. Trans. A Basics, 2008, 4 (319-328): : 319 - 328
  • [35] GROWTH CURVE ANALYSIS OF TEMPERATURE-DEPENDENT PHENOLOGY MODELS
    ESKRIDGE, KM
    STEVENS, EJ
    AGRONOMY JOURNAL, 1987, 79 (02) : 291 - 297
  • [36] Temperature-dependent growth and hypericin biosynthesis in Hypericum perforatum
    Yao, Yuanyuan
    Kang, Tianlan
    Jin, Ling
    Liu, Zihan
    Zhang, Zhen
    Xing, Hua
    Sun, Ping
    Li, Mengfei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 139 : 613 - 619
  • [37] Temperature-Dependent Pyrolytic Product Evolution Profile for Polyethylene Terephthalate
    Hujuri, Ujwala
    Ghoshal, Aloke K.
    Gumma, Sasidhar
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (06) : 3993 - 4000
  • [38] Temperature-dependent pyrolytic product evolution profile for polyethylene terephthalate
    Gumma, S. (s.gumma@iitg.ernet.in), 1600, John Wiley and Sons Inc (130):
  • [39] Genetics, Genomics, and the Evolution of Temperature-dependent Sex Determination in Reptiles
    Rhen, Turk
    Schroeder, Anthony
    Fagerlie, Ruby
    Legge, Heath
    Wessman, Laurel
    Heimler, Jon
    Bonapace-Potvin, Michelle
    Zhang, Kurt
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2013, 53 : E179 - E179
  • [40] Temperature-dependent diffraction studies on the phase evolution of tetraindium heptabromide
    Scholten, M
    Kölle, P
    Dronskowski, R
    JOURNAL OF SOLID STATE CHEMISTRY, 2003, 174 (02) : 349 - 356