Periodic flows, rank-two Poisson structures, and nonholonomic mechanics

被引:27
作者
Fassò, F [1 ]
Giacobbe, A [1 ]
Sansonetto, N [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
基金
美国国家科学基金会; 中国国家自然科学基金; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
Poisson structures; non-holonomic systems; periodic flows;
D O I
10.1070/RD2005v010n03ABEH000315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been recently observed that certain (reduced) nonholonomic systems are Hamiltonian with respect to a rank-two Poisson structure. We link the existence of these structures to a dynamical property of the (reduced) system: its periodicity, with positive period depending continuously on the initial data. Moreover, we show that there are in fact infinitely many such Poisson structures and we classify them. We illustrate the situation on the sample case of a heavy ball rolling on a surface of revolution.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 38 条
[1]  
Abraham R., 2012, Manifolds, tensor analysis, and applications, V75
[2]  
Audin M., 1991, TOPOLOGY TORUS ACTIO
[3]   A proof of the Morse-Bott lemma [J].
Banyaga, A ;
Hurtubise, DE .
EXPOSITIONES MATHEMATICAE, 2004, 22 (04) :365-373
[4]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[5]   Foliations associated to regular Poisson structures [J].
Bertelson, M .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (03) :441-456
[6]   Theory of tensor invariants of integrable Hamiltonian systems .1. Incompatible Poisson structures [J].
Bogoyavlenskij, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) :529-586
[7]   ROLLING OF A BALL ON A SURFACE. NEW INTEGRALS AND HIERARCHY OF DYNAMICS [J].
Borisov, A. V. ;
Mamaev, I. S. ;
Kilin, A. A. .
REGULAR & CHAOTIC DYNAMICS, 2002, 7 (02) :201-219
[8]   ROLLING OF A RIGID BODY ON PLANE AND SPHERE. HIERARCHY OF DYNAMICS [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2002, 7 (02) :177-200
[9]   Dynamics of rolling disk [J].
Borisov, AV ;
Mamaev, IS ;
Kilin, AA .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (02) :201-212
[10]   LECTURES ON MORSE-THEORY, OLD AND NEW [J].
BOTT, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :331-358