Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis

被引:34
作者
Bhatt, Kirti [1 ,2 ]
Feng, Leping [1 ,2 ]
Pabla, Navjotsingh [1 ,2 ]
Liu, Kebin [2 ,3 ]
Smith, Sylvia [1 ,2 ]
Dong, Zheng [1 ,2 ]
机构
[1] Med Coll Georgia, Dept Cellular Biol & Anat, Augusta, GA 30912 USA
[2] Vet Affairs Med Ctr, Augusta, GA 30912 USA
[3] Med Coll Georgia, Dept Biochem, Augusta, GA 30912 USA
关键词
Bcl-2; cisplatin; adenosine 5 '-triphosphate depletion; apoptosis; mitochondria; endoplasmic reticulum;
D O I
10.1152/ajprenal.00415.2007
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Bcl-2 family proteins are central regulators of apoptosis. As the prototypic member, Bcl-2 protects various types of cells against apoptotic insults. In mammalian cells, Bcl-2 has a dual subcellular localization, in mitochondria and endoplasmic reticulum (ER). The respective roles played by mitochondrial and ER-localized Bcl-2 in apoptotic inhibition are unclear. Using Bcl-2 constructs for targeted subcellular expression, we have now determined the contributions of mitochondrial and ER-localized Bcl-2 to the antiapoptotic effects of Bcl-2 in renal tubular cells. Wild-type Bcl-2, when expressed in renal proximal tubular cells, showed partial colocalizations with both cytochrome c and disulfide isomerase, indicating dual localizations of Bcl-2 in mitochondria and ER. In contrast, Bcl-2 constructs with mitochondria-targeting or ER-targeting sequences led to relatively restricted Bcl-2 expression in mitochondria and ER, respectively. Expression of wild-type and mitochondrial Bcl-2 showed significant inhibitory effects on tubular cell apoptosis that was induced by cisplatin or ATP depletion; however, ER-Bcl-2 was much less effective. During ATP depletion, cytochrome c was released from mitochondria into the cytosol. This release was suppressed by wild-type and mitochondrial Bcl-2, but not by ER-Bcl-2. Consistently, wild-type and mitochondrial Bcl-2, but not ER-Bcl-2, blocked Bax activation during ATP depletion, a critical event for mitochondrial outer membrane permeabilization and cytochrome c release. In contrast, ER-Bcl-2 protected against apoptosis during tunicamycin-induced ER stress. Collectively, the results suggest that the cytoprotective effects of Bcl-2 in different renal injury models are largely determined by its subcellular localizations.
引用
收藏
页码:F499 / F507
页数:9
相关论文
共 36 条
[1]   Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event [J].
Annis, MG ;
Zamzami, N ;
Zhu, WJ ;
Penn, LZ ;
Kroemer, G ;
Leber, B ;
Andrews, DW .
ONCOGENE, 2001, 20 (16) :1939-1952
[2]   Cisplatin nephrotoxicity [J].
Arany, I ;
Safirstein, RL .
SEMINARS IN NEPHROLOGY, 2003, 23 (05) :460-464
[3]   Recent advances in the pathophysiology of ischemic acute renal failure [J].
Bonventre, JV ;
Weinberg, JM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (08) :2199-2210
[4]   Cellular response to endoplasmic reticulum stress: a matter of life or death [J].
Boyce, M ;
Yuan, J .
CELL DEATH AND DIFFERENTIATION, 2006, 13 (03) :363-373
[5]   Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins [J].
Brooks, Craig ;
Wei, Qingqing ;
Feng, Leping ;
Dong, Guie ;
Tao, Yanmei ;
Mei, Lin ;
Xie, Zi-Jian ;
Dong, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (28) :11649-11654
[6]   Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury [J].
Castaneda, MP ;
Swiatecka-Urban, A ;
Mitsnefes, MM ;
Feuerstein, D ;
Kaskel, FJ ;
Tellis, V ;
Devarajan, P .
TRANSPLANTATION, 2003, 76 (01) :50-54
[7]   The Bcl-2 family: roles in cell survival and oncogenesis [J].
Cory, S ;
Huang, DCS ;
Adams, JM .
ONCOGENE, 2003, 22 (53) :8590-8607
[8]   Cell death: Critical control points [J].
Danial, NN ;
Korsmeyer, SJ .
CELL, 2004, 116 (02) :205-219
[9]   Update on mechanisms of ischemic acute kidney injury [J].
Devarajan, Prasad .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2006, 17 (06) :1503-1520
[10]   Serine protease inhibitors suppress cytochrome c-mediated caspase-9 activation and apoptosis during hypoxia-reoxygenation [J].
Dong, Z ;
Saikumar, P ;
Patel, Y ;
Weinberg, JM ;
Venkatachalam, MA .
BIOCHEMICAL JOURNAL, 2000, 347 (pt 3) :669-677