Simulation of a multiple-wavelength time-of-flight neutron spectrometer for a long-pulsed spallation source

被引:8
|
作者
Lefmann, Kim [1 ]
Schober, Helmut [2 ]
Mezei, Feri [3 ,4 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab, Mat Res Dept, DK-4000 Roskilde, Denmark
[2] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
[3] Hahn Meitner Inst Berlin GmbH, D-1000 Berlin, Germany
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
neutron instrumentation; time-of-flight spectroscopy; neutron ray-tracing simulation;
D O I
10.1088/0957-0233/19/3/034025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have performed design studies and ray-tracing simulations of a direct-geometry spectrometer at the cold moderator of a long-pulsed 5 MW neutron spallation source. A 100 m long guide path makes it possible to achieve 2% elastic resolution at 5 angstrom incoming neutron wavelength, without a need to shorten the 2 ms long source pulse. Assuming a 16 2/3 Hz repetition rate, the 60 ms time between pulses allows us to extract from each source pulse several monochromatic pulses at the sample with a spacing in the range 5-10 ms. These pulses are equidistantly spaced in wavelength with delta lambda approximate to 0.2-0.4 angstrom depending on the spectrometer setting. If all these bands contain useful information, the spectrometer gains up to an order of magnitude in incident flux from the repetition scheme. The incident flux will then reach values of roughly 100 times the present IN5 spectrometer at the ILL at similar resolution and frame length. There are possibilities of optimizing the guide design further, to achieve even higher flux values. Virtual experiments provide us with the final energy resolution of the spectrometer, including the line shapes. The performance of the instrument is found to be excellent, judged by the virtual data. Such an instrument positioned at a long-pulsed neutron spallation source would be very powerful for cold neutron spectroscopy for energy transfers in the range 10 mu eV to 10 meV.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A FAST NEUTRON TIME-OF-FLIGHT SPECTROMETER
    COOK, CF
    NUCLEAR INSTRUMENTS & METHODS, 1962, 15 (02): : 137 - 145
  • [22] A FAST NEUTRON TIME-OF-FLIGHT SPECTROMETER
    OLIVER, CJ
    COLLINGE, B
    KAYE, G
    NUCLEAR INSTRUMENTS & METHODS, 1967, 50 (01): : 109 - +
  • [23] MEASUREMENTS WITH A NEUTRON TIME-OF-FLIGHT SPECTROMETER
    VONDARDEL, G
    ARKIV FOR FYSIK, 1952, 5 (1-2): : 121 - 121
  • [24] A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source
    Stone, M. B.
    Niedziela, J. L.
    Abernathy, D. L.
    DeBeer-Schmitt, L.
    Ehlers, G.
    Garlea, O.
    Granroth, G. E.
    Graves-Brook, M.
    Kolesnikov, A. I.
    Podlesnyak, A.
    Winn, B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04):
  • [25] THE TIME-OF-FLIGHT SMALL-ANGLE SCATTERING SPECTROMETER SAN AT THE KENS PULSED COLD NEUTRON SOURCE
    ISHIKAWA, Y
    FURUSAKA, M
    NIIMURA, N
    ARAI, M
    HASEGAWA, K
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1986, 19 (pt 4) : 229 - 242
  • [26] FAST NEUTRON TIME-OF-FLIGHT SPECTROMETER
    LEFEVRE, HW
    BORCHERS, RR
    POPPE, CH
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1962, 33 (11): : 1231 - &
  • [27] THE JET NEUTRON TIME-OF-FLIGHT SPECTROMETER
    ELEVANT, T
    ARONSSON, D
    VANBELLE, P
    GROSSHOEG, G
    HOEK, M
    OLSSON, M
    SADLER, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1991, 306 (1-2): : 331 - 342
  • [28] A FAST NEUTRON TIME-OF-FLIGHT SPECTROMETER
    GARG, JB
    NUCLEAR INSTRUMENTS & METHODS, 1959, 6 (01): : 72 - 82
  • [29] THE HARWELL TIME-OF-FLIGHT NEUTRON SPECTROMETER
    MERRISON, AW
    WIBLIN, ER
    NATURE, 1951, 167 (4244) : 346 - 347
  • [30] Design and performance characterization of the time-of-flight liquid neutron reflectometer at the China spallation neutron source
    Wang, Li-Ming
    Zhou, Jianrong
    Wang, Yanfeng
    Sun, Zhijia
    Shen, Fei
    Cai, Weiliang
    Wang, Guang
    Tang, Ming
    Du, Rong
    Yan, Lili
    Chen, Shenglan
    Guo, Haichuan
    Zhang, Jun-Rong
    Liang, Tian-Jiao
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2024, 52 (01) : 1 - 12