Three-Point Boundary Value Problems for Conformable Fractional Differential Equations

被引:69
作者
Batarfi, H. [1 ]
Losada, Jorge [2 ]
Nieto, Juan J. [1 ,2 ]
Shammakh, W. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ Santiago de Compostela, Fac Matemat, Dept Analise Matemat, Santiago De Compostela 15782, Spain
关键词
D O I
10.1155/2015/706383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a fractional differential equation using a recent novel concept of fractional derivative with initial and three-point boundary conditions. We first obtain Green's function for the linear problem and then we study the nonlinear differential equation.
引用
收藏
页数:6
相关论文
共 9 条
[1]  
Ahmad B, 2013, J FUNCTION SPACES AP, V2013
[2]   Sequential fractional differential equations with three-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3046-3052
[3]   Model of Break-Bone Fever via Beta-Derivatives [J].
Atangana, Abdon ;
Noutchie, Suares Clovis Oukouomi .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[4]  
Caputo M., 2015, PROGR FRACTIONAL DIF, V1
[5]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[6]  
Losada J., 2015, PROGR FRACTIONAL DIF, V1
[7]  
Ortigueira M. D., 2014, J COMPUT PHYS, V264, P65
[8]  
Smart D. R., 1974, Fixed-Point Theorems
[9]   No violation of the Leibniz rule. No fractional derivative [J].
Tarasov, Vasily E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) :2945-2948