Deep Domain Adaptation With Differential Privacy

被引:23
|
作者
Wang, Qian [1 ,2 ]
Li, Zixi [1 ,2 ]
Zou, Qin [3 ]
Zhao, Lingchen [1 ,2 ]
Wang, Song [4 ,5 ]
机构
[1] Wuhan Univ, Key Lab Aerosp Informat Secur & Trusted Comp, Minist Educ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[2] State Key Lab Cryptog, Beijing 100878, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[4] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA
[5] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
关键词
Domain adaptation; privacy preservation; differential privacy; deep learning; convolutional neural network; KERNEL; NOISE;
D O I
10.1109/TIFS.2020.2983254
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.
引用
收藏
页码:3093 / 3106
页数:14
相关论文
共 50 条
  • [31] Domain Adaptation for Privacy-Preserving Pedestrian Detection in Thermal Imagery
    Kieu, My
    Bagdanov, Andrew D.
    Bertini, Marco
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 203 - 213
  • [32] GAN-Based Privacy-Preserving Unsupervised Domain Adaptation
    Zhao, Dongdong
    Wang, Zhao
    Li, Huanhuan
    Xiang, Jianwen
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 117 - 126
  • [33] Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey
    Zhang, Siyu
    Su, Lei
    Gu, Jiefei
    LI, Ke
    Zhou, Lang
    Pecht, Michael
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (01) : 45 - 74
  • [34] Deep multi-Wasserstein unsupervised domain adaptation
    Le, Tien-Nam
    Habrard, Amaury
    Sebban, Marc
    PATTERN RECOGNITION LETTERS, 2019, 125 : 249 - 255
  • [35] Deep Learning with Label Differential Privacy
    Ghazi, Badih
    Golowich, Noah
    Kumar, Ravi
    Manurangsi, Pasin
    Zhang, Chiyuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [36] Intelligent Fault Diagnosis With Deep Adversarial Domain Adaptation
    Wang, Yu
    Sun, Xiaojie
    Li, Jie
    Yang, Ying
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [37] DEEP SEMI-SUPERVISED LEARNING FOR DOMAIN ADAPTATION
    Chen, Hung-Yu
    Chien, Jen-Tzung
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [38] Seismic Facies Analysis: A Deep Domain Adaptation Approach
    Nasim, M. Quamer
    Maiti, Tannistha
    Srivastava, Ayush
    Singh, Tarry
    Mei, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Deep Adaptation Relation Networks for Across Domain Classification
    Li, Yuze
    Yang, Chunling
    Zhang, Yan
    Chen, Yu
    Zhang, Peng
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 922 - 926
  • [40] Deep Domain Adaptation on Vehicle Re-identification
    Wang, Yifeng
    Zeng, Dan
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 416 - 420