Viscosity methods giving uniqueness for martingale problems

被引:18
作者
Costantini, Cristina [1 ]
Kurtz, Thomas G. [2 ,3 ]
机构
[1] Univ G dAnnunzio, Dipartimento Econ, Pescara, Italy
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
martingale problem; uniqueness; metric space; viscosity solution; boundary conditions; constrained martingale problem; MODELS;
D O I
10.1214/EJP.v20-3624
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let E be a complete, separable metric space and A be an operator on C-b(E). We give an abstract definition of viscosity sub/supersolution of the resolvent equation lambda u - Au = h and show that, if the comparison principle holds, then the martingale problem for A has a unique solution. Our proofs work also under two alternative definitions of viscosity sub/supersolution which might be useful, in particular, in infinite dimensional spaces, for instance to study measure-valued processes. We prove the analogous result for stochastic processes that must satisfy boundary conditions, modeled as solutions of constrained martingale problems. In the case of reflecting diffusions in D subset of R-d, our assumptions allow D to be nonsmooth and the direction of reflection to be degenerate. Two examples are presented: A diffusion with degenerate oblique direction of reflection and a class of jump diffusion processes with infinite variation jump component and possibly degenerate diffusion matrix.
引用
收藏
页数:27
相关论文
共 28 条
[1]  
[Anonymous], 1998, Journal of Mathematical Systems, Estimation and Control
[2]  
[Anonymous], ELECT J PROBAB
[3]   Convergence by Viscosity Methods in Multiscale Financial Models with Stochastic Volatility [J].
Bardi, Martino ;
Cesaroni, Annalisa ;
Manca, Luigi .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2010, 1 (01) :230-265
[4]  
Bayraktar E, 2012, P AM MATH SOC, V140, P3645
[5]  
Benth Fred Espen, 2001, FINANC STOCH, V5, P275, DOI DOI 10.1007/PL00013538
[6]   Diffusion approximation for transport processes with general reflection boundary conditions [J].
Costantini, Cristina ;
Kurtz, Thomas G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (05) :717-762
[7]   Singular risk-neutral valuation equations [J].
Costantini, Cristina ;
Papi, Marco ;
D'Ippoliti, Fernanda .
FINANCE AND STOCHASTICS, 2012, 16 (02) :249-274
[8]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[9]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[10]  
Dynkin E. B., 1965, ANN PROBAB, V122