On generalized quasi-convex bounded sequences

被引:3
|
作者
Karakus, Mahmut [1 ]
机构
[1] Yuzuncu Yil Univ, Dept Math, Van, Turkey
关键词
FK space; beta-; dual; gamma-; Topological sequence spaces; FK-SPACES; SECTIONS;
D O I
10.1063/1.4959679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space of all sequences a = (a(k)) for which parallel to a parallel to(q) = Sigma(k)k vertical bar Delta(2) a(k)vertical bar + sup(k) vertical bar a(k)vertical bar < infinity is denoted by q. Here, Delta a(k) = a(k) - a(k+1) and Delta(m)a(k) = Delta(Delta(m-1) a(k)) = Delta(m-1) a(k) - Delta(m-1) a(k+1) with Delta(0)a(k) = a(k), m >= 1. If a = (a(k)) is an element of q then k Delta a(k) -> 0 (k -> infinity) and q subset of by, the space of all sequences of bounded-variation, since Sigma vertical bar Delta a(k)vertical bar <= Sigma(k)k vertical bar Delta(2) a(k)vertical bar. In this study, we give a generalization of quasi-convex bounded sequences.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Locally quasi-convex convergence groups
    Sharma, Pranav
    TOPOLOGY AND ITS APPLICATIONS, 2020, 285
  • [42] CONDITIONS FOR CONVEXITY OF QUASI-CONVEX FUNCTIONS
    CROUZEIX, JP
    MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (01) : 120 - 125
  • [43] NEW EXAMPLES OF QUASI-CONVEX FUNCTIONS
    SVERAK, V
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (04) : 293 - 300
  • [44] Quasi-convex Functions in Carnot Groups
    Mingbao SUN Xiaoping YANG Department of Applied Mathematics
    Department of Applied Mathematics
    ChineseAnnalsofMathematics, 2007, (02) : 235 - 242
  • [45] LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS
    MALY, J
    MANUSCRIPTA MATHEMATICA, 1994, 85 (3-4) : 419 - 428
  • [46] Quasi-convex punctions in carnot groups
    Sun, Mingbao
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (02) : 235 - 242
  • [47] A Practical Approach to Quasi-convex Optimization
    Dhompongsa, Sompong
    Kumam, Poom
    Khammahawong, Konrawut
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1641 - 1647
  • [48] CENTRAL SECTIONS IN QUASI-CONVEX PROGRAMMING
    ENCHEVA, TI
    LEVIN, AI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (11): : 39 - 42
  • [49] TRANSFORMATIONS OF QUASI-CONVEX PROGRAMMING PROBLEMS
    MANAS, M
    EKONOMICKO-MATEMATICKY OBZOR, 1968, 4 (01): : 93 - 99
  • [50] QUASI-CONVEX FUNCTIONS OF HIGHER ORDER
    Mrowiec, Jacek
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1335 - 1354