Nonunique Fixed Point Results via Kannan F-Contraction on Quasi-Partial b-Metric Space

被引:4
作者
Gautam, Pragati [1 ]
Kumar, Santosh [2 ]
Verma, Swapnil [1 ]
Gupta, Gauri [1 ]
机构
[1] Univ Delhi, Kamala Nehru Coll, Dept Math, August Kranti Marg, New Delhi 110049, India
[2] Univ Dar Es Salaam, Coll Nat & Appl Sci, Dept Math, Dar Es Salaam, Tanzania
关键词
INTERPOLATIVE CHATTERJEA; THEOREMS; MAPPINGS;
D O I
10.1155/2021/2163108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is aimed at acquainting with a new Kannan F-expanding type mapping by the approach of Wardowski in the complete metric space. We establish some fixed point results for Kannan F-expanding type mapping and F-contractive type mappings which satisfy F-contraction conditions. Additionally, some new results are given which generalize several results present in the literature. Moreover, some applications and examples are provided to show the practicality of our results.
引用
收藏
页数:10
相关论文
共 36 条
  • [1] Existence and uniqueness of a common fixed point on partial metric spaces
    Abdeljawad, T.
    Karapinar, E.
    Tas, K.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1900 - 1904
  • [2] F-contraction mappings on metric-like spaces in connection with integral equations on time scales
    Agarwal, Ravi P.
    Aksoy, Umit
    Karapinar, Erdal
    Erhan, Inci M.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [3] Aksoy Ü, 2016, J NONLINEAR CONVEX A, V17, P1095
  • [4] Fixed Points of Generalized F-Suzuki Type Contraction in Complete b-Metric Spaces
    Alsulami, Hamed Hamdan
    Karapinar, Erdal
    Piri, Hossein
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [5] Modified F-Contractions via α-Admissible Mappings and Application to Integral Equations
    Aydi, Hassen
    Karapinar, Erdal
    Yazidi, Habib
    [J]. FILOMAT, 2017, 31 (05) : 1141 - 1148
  • [6] A fixed point theorem for set-valued quasi-contractions in b-metric spaces
    Aydi, Hassen
    Bota, Monica-Felicia
    Karapinar, Erdal
    Mitrovic, Slobodanka
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [7] Aydi H, 2012, FIXED POINT THEOR-RO, V13, P337
  • [8] Bakhtin I., 1989, Functinal Analysis Ulianowsk Gos. Ped. Inst, V30, P26, DOI DOI 10.1039/AP9892600037
  • [9] Banach S., 1922, Fund. Math, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
  • [10] Solvability of integrodifferential problems via fixed point theory in b-metric spaces
    Cosentino, Monica
    Jleli, Mohamed
    Samet, Bessem
    Vetro, Calogero
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,