Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine

被引:0
|
作者
Shafiee, Abbas [1 ,2 ,3 ]
机构
[1] Univ Queensland, Translat Res Inst, UQ Diamantina Inst, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Ctr Regenerat Med, Brisbane, Qld, Australia
[3] Metro North Hosp & Hlth Serv, Royal Brisbane & Womens Hosp, Brisbane, Qld, Australia
关键词
regenerative medicine; 3D printing; biocompatible materials; tissue engineering; organoids; multiomics; DEPOSITION MODELING FDM; DRUG-DELIVERY DEVICES; IN-VITRO; RELEASE; HYDROGEL; RECONSTRUCTION; ANGIOGENESIS; CHEMOTHERAPY; COCULTURE; PROFILES;
D O I
10.1089/ten.tea.2019.0278
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 50 条
  • [31] Biomimetic scaffolds with three-dimensional undulated microtopographies
    Yu, Jonelle Z.
    Korkmaz, Emrullah
    Berg, Monica I.
    LeDuc, Philip R.
    Ozdoganlar, O. Burak
    BIOMATERIALS, 2017, 128 : 109 - 120
  • [32] Three-dimensional printing of scaffolds for facial reconstruction
    Zhou, Yuxiao
    Grayson, Warren
    MRS BULLETIN, 2022, 47 (01) : 91 - 97
  • [33] Three-dimensional printing of scaffolds for facial reconstruction
    Yuxiao Zhou
    Warren Grayson
    MRS Bulletin, 2022, 47 : 91 - 97
  • [34] Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts
    Klein, Anja
    Baranowski, Andreas
    Ritz, Ulrike
    Goetz, Hermann
    Heinemann, Sascha
    Mattyasovszky, Stefan
    Rommens, Pol M.
    Hofmann, Alexander
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2018, 106 (07) : 2565 - 2575
  • [35] Three-dimensional bioprinting in tissue engineering and regenerative medicine
    Gao, Guifang
    Cui, Xiaofeng
    BIOTECHNOLOGY LETTERS, 2016, 38 (02) : 203 - 211
  • [36] Design and Fabrication of Human Skin by Three-Dimensional Bioprinting
    Lee, Vivian
    Singh, Gurtej
    Trasatti, John P.
    Bjornsson, Chris
    Xu, Xiawei
    Thanh Nga Tran
    Yoo, Seung-Schik
    Dai, Guohao
    Karande, Pankaj
    TISSUE ENGINEERING PART C-METHODS, 2014, 20 (06) : 473 - 484
  • [37] Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering
    Fan, Changjiang
    Wang, Dong-An
    TISSUE ENGINEERING PART B-REVIEWS, 2017, 23 (05) : 451 - 461
  • [38] In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds
    Jordan, Alex M.
    Kim, Si-Eun
    Van de Voorde, Kristen
    Pokorski, Jonathan K.
    Korley, LaShanda T. J.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (08): : 1869 - 1879
  • [39] Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering
    Chen, Yujie
    Dong, Xutao
    Shafiq, Muhammad
    Myles, Gregory
    Radacsi, Norbert
    Mo, Xiumei
    ADVANCED FIBER MATERIALS, 2022, 4 (05) : 959 - 986
  • [40] Three-Dimensional Printed Hysteria
    Hassan, Karriem
    3D PRINTING AND ADDITIVE MANUFACTURING, 2020, 7 (02) : 45 - 47