Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine

被引:0
|
作者
Shafiee, Abbas [1 ,2 ,3 ]
机构
[1] Univ Queensland, Translat Res Inst, UQ Diamantina Inst, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Ctr Regenerat Med, Brisbane, Qld, Australia
[3] Metro North Hosp & Hlth Serv, Royal Brisbane & Womens Hosp, Brisbane, Qld, Australia
关键词
regenerative medicine; 3D printing; biocompatible materials; tissue engineering; organoids; multiomics; DEPOSITION MODELING FDM; DRUG-DELIVERY DEVICES; IN-VITRO; RELEASE; HYDROGEL; RECONSTRUCTION; ANGIOGENESIS; CHEMOTHERAPY; COCULTURE; PROFILES;
D O I
10.1089/ten.tea.2019.0278
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 50 条
  • [21] Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing
    Marques, Joana Rita Oliveira Faria
    Gonzalez-Alva, Patricia
    Lin, Ruby Yu-Tong
    Fernandes, Beatriz Ferreira
    Chaurasia, Akhilanand
    Dubey, Nileshkumar
    SLAS TECHNOLOGY, 2023, 28 (03): : 152 - 164
  • [22] Design and development of three-dimensional scaffolds for tissue engineering
    Liu, C.
    Xia, Z.
    Czernuszka, J. T.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A7) : 1051 - 1064
  • [23] Design and Fabrication of a Low-Cost Three-Dimensional Bioprinter
    McElheny, Colton
    Hayes, Daniel
    Devireddy, Ram
    JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2017, 11 (04):
  • [24] Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing
    Tan, Shi Hua
    Ngo, Zong Heng
    Leavesley, David
    Liang, Kun
    TISSUE ENGINEERING PART B-REVIEWS, 2022, 28 (01) : 160 - 181
  • [25] Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering
    Andric T.
    Taylor B.L.
    Whittington A.R.
    Freeman J.W.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 32 - 41
  • [26] Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering
    Andric, Tea
    Wright, Lee D.
    Taylor, Brittany L.
    Freeman, Joseph W.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (08) : 2097 - 2105
  • [27] Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation
    Marchioli, G.
    van Gurp, L.
    van Krieken, P. P.
    Stamatialis, D.
    Engelse, M.
    van Blitterswijk, C. A.
    Karperien, M. B. J.
    de Koning, E.
    Alblas, J.
    Moroni, L.
    van Apeldoorn, A. A.
    BIOFABRICATION, 2015, 7 (02)
  • [28] Injectable polymer/nanomaterial composites for the fabrication of three-dimensional biomaterial scaffolds
    Motealleh, Andisheh
    Dorri, Pooya
    Kehr, Nermin S.
    BIOMEDICAL MATERIALS, 2020, 15 (04)
  • [29] Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the currentECMmaterials
    Da Silva, Kate
    Kumar, Pradeep
    Choonara, Yahya E.
    du Toit, Lisa C.
    Pillay, Viness
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (12) : 2324 - 2350
  • [30] Three-Dimensional Printed Polycaprolactone Scaffolds for Bone Regeneration Success and Future Perspective
    Teoh, Swee-Hin
    Goh, Bee-Tin
    Lim, Jing
    TISSUE ENGINEERING PART A, 2019, 25 (13-14) : 931 - 935