Copper-Catalyzed Azide-Alkyne Cycloaddition in the Synthesis of Polydiacetylene: "Click Glycoliposome" as Biosensors for the Specific Detection of Lectins

被引:39
|
作者
Pernia Leal, Manuel [1 ]
Assali, Mohyeddin [1 ]
Fernandez, Inmaculada [2 ]
Khiar, Noureddine [1 ]
机构
[1] Univ Seville, CSIC, Dept Bioorgan Chem, Seville 41092, Spain
[2] Univ Seville, Dept Organ & Pharmaceut Chem, E-41012 Seville, Spain
关键词
biosensors; carbohydrates; click chemistry; lectins; polydiacetylene; COLORIMETRIC DETECTION; LIPID VESICLES; CONCANAVALIN-A; TOPOCHEMICAL POLYMERIZATION; REVERSIBLE THERMOCHROMISM; INTERFACIAL CATALYSIS; ELECTRONIC-STRUCTURE; ESCHERICHIA-COLI; RECOGNITION; LIPOSOMES;
D O I
10.1002/chem.201002236
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supramolecular self-assembly of conjugated diacetylenic amphiphile-tethered ligands photopolymerize to afford polydiacetylene (PDA) functional liposomes. Upon specific interaction with a variety of biological analytes in aqueous solution, PDA exhibits rapid colorimetric transitions. The PDA nanoassemblies, which are excellent membrane mimics, include an ene-yne polymeric reporter responsible for the chromatic transitions and the molecular recognition elements that are responsible for selective and specific binding to the biological target. A bottleneck in the fabrication of these colorimetric biosensors is the preparation of the diacetylenic monomer embedded with the recognition element of choice. In the present work, we make use of copper-catalyzed azide alkyne cycloaddition (CuAAC) as key step in the preparation of sugar-coated liposome biosensors. The regioselective click ligation of the triacetylenic N-(2-propynyl)pentacosa-10,12-diynamide (NPPCDAM) with a variety of mannose- and lactose-tethered azides afforded chemo- and regioselectively the corresponding 1,2,3-triazole. The obtained diacetylenic monomers were incorporated efficiently into vesicles to afford functional mannose- and lactose-coated glycoliposomes. The obtained FDA-based click glycoliposomes have been characterized by using transmission electronic microscopy (TEM), dynamic light scattering (DLS), and UV/Vis spectroscopy. The efficiency of the reported approach was demonstrated by the rapid optimization of the hydrophilic spacer between the lipidic matrix and the mannose head group for the colorimetric detection of Concavalin A.
引用
收藏
页码:1828 / 1836
页数:9
相关论文
共 50 条
  • [21] Asymmetric Copper-Catalyzed Azide-Alkyne Cycloadditions
    Brittain, William D. G.
    Buckley, Benjamin R.
    Fossey, John S.
    ACS CATALYSIS, 2016, 6 (06): : 3629 - 3636
  • [22] Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction
    Li, Li
    Zhang, Zhiyuan
    MOLECULES, 2016, 21 (10)
  • [23] The Use of Ligands in Copper-Catalyzed [3+2] Azide-Alkyne Cycloaddition: Clicker than Click Chemistry?
    Diez-Gonzalez, Silvia
    CURRENT ORGANIC CHEMISTRY, 2011, 15 (16) : 2830 - 2845
  • [24] Photoinduced Vesicle Formation via the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction
    Konetski, Danielle
    Gong, Tao
    Bowman, Christopher N.
    LANGMUIR, 2016, 32 (32) : 8195 - 8201
  • [25] POSS-based hybrid thermosets via photoinduced copper-catalyzed azide-alkyne cycloaddition click chemistry
    Arslan, Irem
    Tasdelen, Mehmet Atilla
    DESIGNED MONOMERS AND POLYMERS, 2016, 19 (02) : 155 - 160
  • [26] Postsynthetic DNA Modification through the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction
    Gramlich, Philipp M. E.
    Wirges, Christian T.
    Manetto, Antonio
    Carell, Thomas
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (44) : 8350 - 8358
  • [27] Selection of Natural Peptide Ligands for Copper-Catalyzed Azide-Alkyne Cycloaddition Catalysis
    Aioub, Allison G.
    Dahora, Lindsay
    Gamble, Kelly
    Finn, M. G.
    BIOCONJUGATE CHEMISTRY, 2017, 28 (06) : 1693 - 1701
  • [28] Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition
    Punna, S
    Kuzelka, J
    Wang, Q
    Finn, MG
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (15) : 2215 - 2220
  • [29] The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: A quantum mechanical investigation
    Ozen, Cihan
    Tuzun, Nurcan S.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2012, 34 : 101 - 107
  • [30] On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition
    Zhu, Lei
    Brassard, Christopher J.
    Zhang, Xiaoguang
    Guha, P. M.
    Clark, Ronald J.
    CHEMICAL RECORD, 2016, 16 (03): : 1501 - 1517