A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations

被引:25
|
作者
El Bouajaji, M. [1 ]
Thierry, B. [2 ,3 ]
Antoine, X. [1 ]
Geuzaine, C. [2 ]
机构
[1] Univ Lorraine, Inst Elie Cartan de Lorraine, CNRS UMR 7502, INRIA CORIDA Team, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Liege, Inst Montefiore B28, B-4000 Liege, Belgium
[3] Univ Paris 06, LJLL, Paris, France
关键词
Maxwell's equation; Electromagnetism; Domain decomposition methods; Finite elements; Pade approximants; OPTIMIZED SCHWARZ METHODS; TRANSMISSION CONDITIONS;
D O I
10.1016/j.jcp.2015.03.041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new non-overlapping domain decomposition method for the time harmonic Maxwell's equations, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Magnetic-to-Electric operator. A convergence theorem of the algorithm is established and numerical results validating the new approach are presented. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 57
页数:20
相关论文
共 50 条
  • [31] Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7151 - 7175
  • [32] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [33] Homogenization of time-harmonic Maxwell's equations in nonhomogeneous plasmonic structures
    Maier, Matthias
    Margetis, Dionisios
    Mellet, Antoine
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377
  • [34] Hodge decomposition for two-dimensional time-harmonic Maxwell's equations: impedance boundary condition
    Brenner, S. C.
    Gedicke, J.
    Sung, L. -Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (02) : 370 - 390
  • [35] A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements
    Tsuji, Paul
    Engquist, Bjorn
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3770 - 3783
  • [36] A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation
    Boubendir, Y.
    Antoine, X.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 262 - 280
  • [37] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [38] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [39] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [40] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67