Removable Singularities for Quasilinear Elliptic Equations with Source Terms Involving the Solution and Its Gradient

被引:0
作者
Hirata, Kentaro [1 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, Dept Math, Higashihiroshima 7398526, Japan
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2022年 / 53卷 / 03期
关键词
Removable singularity; Quasilinear elliptic equation; Wolff potential;
D O I
10.1007/s00574-022-00283-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like -Delta(p)u = a vertical bar u vertical bar(q) + b vertical bar del u vertical bar(s) + c vertical bar u vertical bar(sigma)vertical bar del u vertical bar(tau) with nonnegative bounded Borel measurable functions a, b, c and positive numbers q, s, sigma, tau. In particular, we give upper bounds of exponents q, s, sigma, tau and a sharp growth condition for nonnegative weak solutions in R-N\E to be extended to the whole of R-N as solutions, when E is a compact set satisfying a uniform Minkowski condition.
引用
收藏
页码:787 / 800
页数:14
相关论文
共 6 条
[1]  
[Anonymous], 2006, Nonlinear potential theory of degenerate elliptic equations
[2]   Removable sets for continuous solutions of quasilinear elliptic equations with nonlinear source or absorption terms [J].
Hirata, Kentaro ;
Ono, Takayori .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) :41-59
[3]   Removable singularities and singular solutions of semilinear elliptic equations [J].
Hirata, Kentaro ;
Ono, Takayori .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 105 :10-23
[4]   THE WIENER TEST AND POTENTIAL ESTIMATES FOR QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
KILPELAINEN, T ;
MALY, J .
ACTA MATHEMATICA, 1994, 172 (01) :137-161
[5]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS [J].
SERRIN, J .
ACTA MATHEMATICA, 1964, 111 (3-4) :247-302
[6]  
Stein E.M., 1970, Singular Integrals and Differentiability Properties of Functions