Existence of critical points for some noncoercive functionals

被引:21
作者
Arcoya, D [1 ]
Boccardo, L
Orsina, L
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Rome, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2001年 / 18卷 / 04期
关键词
D O I
10.1016/S0294-1449(01)00069-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study critical points problems for some integral functionals with principal part having degenerate coerciveness, whose model is J(v) = (1)/(2) integral (Omega) (/delv/2) / ((b(x)+/v/)2 alpha) - (1)/(m) integral (Omega) /v/(m), v is an element of H-0(1)(Omega), with 1 < m < 2*(1 - alpha). We will prove several existence and nonexistence results depending on different assumptions on both m and alpha. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:437 / 457
页数:21
相关论文
共 10 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] Critical points for multiple integrals of the calculus of variations
    Arcoya, D
    Boccardo, L
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) : 249 - 274
  • [3] ARCOYA D, IN PRESS COMM APPL A
  • [4] Some remarks on critical point theory for nondifferentiable functionals
    Arcoya, David
    Boccardo, Lucio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01): : 79 - 100
  • [5] Boccardo L., 1997, ANN SCUOLA NORM-SCI, V25, P95
  • [6] DEGIORGI E, 1968, LECT NOTES I NAZL AL
  • [7] A CRITICAL-POINT THEORY FOR NONSMOOTH FUNCTIONALS
    DEGIOVANNI, M
    MARZOCCHI, M
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 73 - 100
  • [8] QUASI-LINEAR ELLIPTIC-EQUATIONS WITH QUADRATIC GROWTH IN UNBOUNDED-DOMAINS
    DONATO, P
    GIACHETTI, D
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) : 791 - 804
  • [9] Ladyzenskaya O.A., 1968, EQUATIONS DERIVEES P
  • [10] Pohozaev S. I., 1965, SOV MATH DOKL, V6, P1408