Existence of critical points for some noncoercive functionals

被引:22
作者
Arcoya, D [1 ]
Boccardo, L
Orsina, L
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Rome, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2001年 / 18卷 / 04期
关键词
D O I
10.1016/S0294-1449(01)00069-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study critical points problems for some integral functionals with principal part having degenerate coerciveness, whose model is J(v) = (1)/(2) integral (Omega) (/delv/2) / ((b(x)+/v/)2 alpha) - (1)/(m) integral (Omega) /v/(m), v is an element of H-0(1)(Omega), with 1 < m < 2*(1 - alpha). We will prove several existence and nonexistence results depending on different assumptions on both m and alpha. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:437 / 457
页数:21
相关论文
共 10 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Critical points for multiple integrals of the calculus of variations [J].
Arcoya, D ;
Boccardo, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) :249-274
[3]  
ARCOYA D, IN PRESS COMM APPL A
[4]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[5]  
Boccardo L., 1997, ANN SCUOLA NORM-SCI, V25, P95
[6]  
DEGIORGI E, 1968, LECT NOTES I NAZL AL
[7]   A CRITICAL-POINT THEORY FOR NONSMOOTH FUNCTIONALS [J].
DEGIOVANNI, M ;
MARZOCCHI, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 :73-100
[8]   QUASI-LINEAR ELLIPTIC-EQUATIONS WITH QUADRATIC GROWTH IN UNBOUNDED-DOMAINS [J].
DONATO, P ;
GIACHETTI, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) :791-804
[9]  
Ladyzenskaya O.A., 1968, EQUATIONS DERIVEES P
[10]  
Pohozaev S. I., 1965, SOV MATH DOKL, V6, P1408