Safe Human-Robot Coetaneousness Through Model Predictive Control Barrier Functions and Motion Distributions

被引:2
作者
Davoodi, Mohammadreza [1 ]
Cloud, Joseph M. [2 ]
Iqbal, Asif [1 ]
Beksi, William J. [2 ]
Gans, Nicholas R. [1 ]
机构
[1] Univ Texas Arlington, Res Inst, Ft Worth, TX 76118 USA
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 20期
基金
美国国家科学基金会;
关键词
Probabilistic Movement Primitives; Control Barrier Functions; Model Predictive Control; Human-Robot Coexistence; PROBABILISTIC MOVEMENT PRIMITIVES;
D O I
10.1016/j.ifacol.2021.11.186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Future real-world applications will consist of robots and human workers collaborating with each other in a shared environment to increase productivity. In such scenarios, it is necessary to guarantee the safety of humans while maintaining precise control of the robots performing tasks. Probabilistic movement primitives (ProMPs) are a powerful tool for defining a distribution of trajectories for dynamic systems. However, they have been solely used for determining robot trajectories. In this paper, we utilize ProMPs to predict the probabilistic motion of humans in the environment. To achieve this, we propose a combination of model predictive control (MPC) and control barrier functions (CBFs) to guide a robot along a predefined trajectory while guaranteeing it always maintains a desired distance from a human worker motion distribution defined by a ProMP. A case study is provided to demonstrate the efficacy of our methods. Copyright (C) 2021 The Authors.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 27 条
  • [1] Agrawal A, 2017, ROBOTICS: SCIENCE AND SYSTEMS XIII
  • [2] Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ECC.2019.8796030, 10.23919/ecc.2019.8796030]
  • [3] Control Barrier Function Based Quadratic Programs for Safety Critical Systems
    Ames, Aaron D.
    Xu, Xiangru
    Grizzle, Jessy W.
    Tabuada, Paulo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3861 - 3876
  • [4] Bai HY, 2015, IEEE INT CONF ROBOT, P454, DOI 10.1109/ICRA.2015.7139219
  • [5] Borrelli F., 2017, P 40 IEEE C DECISION
  • [6] Calinon S., 2017, Humanoid Robotics: A Reference.
  • [7] Distributed model predictive control: A tutorial review and future research directions
    Christofides, Panagiotis D.
    Scattolini, Riccardo
    Munoz de la Pena, David
    Liu, Jinfeng
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 : 21 - 41
  • [8] De Luca A, 2012, P IEEE RAS-EMBS INT, P288, DOI 10.1109/BioRob.2012.6290917
  • [9] Collaborative Interaction Models for Optimized Human-Robot Teamwork
    Fishman, Adam
    Paxton, Chris
    Yang, Wei
    Fox, Dieter
    Boots, Byron
    Ratliff, Nathan
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 11221 - 11228
  • [10] Adaptation and Robust Learning of Probabilistic Movement Primitives
    Gomez-Gonzalez, Sebastian
    Neumann, Gerhard
    Schoelkopf, Bernhard
    Peters, Jan
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (02) : 366 - 379