On the clique number of Paley graphs of prime power order

被引:13
作者
Yip, Chi Hoi [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Paley graph; Stepanov's method; Clique number; Binomial coefficient;
D O I
10.1016/j.ffa.2021.101930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finding a reasonably good upper bound for the clique number of Paley graphs is an open problem in additive combinatorics. A recent breakthrough by Hanson and Petridis using Stepanov's method gives an improved upper bound on Paley graphs defined on a prime field F-p, where p equivalent to 1 (mod 4). We extend their idea to the finite field F-q, where q = p(2s+1) for a prime p equivalent to 1 (mod 4) and a non-negative integer s. We show the clique number of the Paley graph over Fp2 epsilon+1 is at most min (p(s)inverted right perpendicular root p/2inverted left perpendicular, root q/2 + p(s)+1/4 + root 2p/32p(s-1). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Computing clique and chromatic number of circular-perfect graphs in polynomial time [J].
Arnaud Pêcher ;
Annegret K. Wagler .
Mathematical Programming, 2013, 141 :121-133
[42]   Computing clique and chromatic number of circular-perfect graphs in polynomial time [J].
Pecher, Arnaud ;
Wagler, Annegret K. .
MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) :121-133
[43]   Degree sequence conditions for maximally edge-connected graphs depending on the clique number [J].
Dankelmann, P ;
Volkmann, L .
DISCRETE MATHEMATICS, 2000, 211 (1-3) :217-223
[44]   THE CLIQUE NUMBER OF Γ(Zpn (α)) [J].
Abughneim, Omar A. ;
Abdaljawad, Emad E. ;
Al-Ezeh, Hasan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) :1-13
[45]   Vertex-degree function index for concave functions of graphs with a given clique number [J].
Yang, Jiaxiang ;
Liu, Hechao ;
Wang, Yixiang .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) :2197-2208
[46]   A constant amortized time enumeration algorithm for independent sets in graphs with bounded clique number [J].
Kurita, Kazuhiro ;
Wasa, Kunihiro ;
Uno, Takeaki ;
Arimura, Hiroki .
THEORETICAL COMPUTER SCIENCE, 2021, 874 :32-41
[47]   The Smith and critical groups of Paley graphs [J].
David B. Chandler ;
Peter Sin ;
Qing Xiang .
Journal of Algebraic Combinatorics, 2015, 41 :1013-1022
[48]   The Smith and critical groups of Paley graphs [J].
Chandler, David B. ;
Sin, Peter ;
Xiang, Qing .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (04) :1013-1022
[49]   Paley graphs have Hamilton decompositions [J].
Alspach, Brian ;
Bryant, Darryn ;
Dyer, Danny .
DISCRETE MATHEMATICS, 2012, 312 (01) :113-118
[50]   DISTRIBUTION OF POWER RESIDUES OVER SHIFTED SUBFIELDS AND MAXIMAL CLIQUES IN GENERALIZED PALEY GRAPHS [J].
Martin, Greg ;
Yip, Chi hoi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) :109-124