Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems

被引:44
|
作者
Ogwo, G. N. [1 ]
Izuchukwu, C. [1 ,2 ]
Shehu, Y. [3 ]
Mewomo, O. T. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] DSI NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
新加坡国家研究基金会;
关键词
Variational inequality problems; Quasimonotone; Relaxation technique; relaxed inertial; Subgradient extragradient method; Extragradient method; PROXIMAL METHOD; ALGORITHM;
D O I
10.1007/s10915-021-01670-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present two new relaxed inertial subgradient extragradient methods for solving variational inequality problems in a real Hilbert space. We establish the convergence of the sequence generated by these methods when the cost operator is quasimonotone and Lipschitz continuous, and when it is Lipschitz continuous without any form of monotonicity. The methods combine both the inertial and relaxation techniques in order to achieve high convergence speed, and the techniques used are quite different from the ones in most papers for solving variational inequality problems. Furthermore, we present some experimental results to illustrate the profits gained from the relaxed inertial steps.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems
    G. N. Ogwo
    C. Izuchukwu
    Y. Shehu
    O. T. Mewomo
    Journal of Scientific Computing, 2022, 90
  • [2] On the convergence of inertial two-subgradient extragradient method for variational inequality problems
    Cao, Yu
    Guo, Ke
    OPTIMIZATION, 2020, 69 (06) : 1237 - 1253
  • [3] CONVERGENCE THEOREM OF RELAXED QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEMS
    Kim, Jong Kyu
    Alesemi, Meshari
    Salahuddin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (12) : 2671 - 2678
  • [4] Inertial Subgradient Extragradient Methods for Solving Variational Inequality Problems and Fixed Point Problems
    Okeke, Godwin Amechi
    Abbas, Mujahid
    de la Sen, Manuel
    AXIOMS, 2020, 9 (02)
  • [5] Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems
    Yotkaew, Pongsakorn
    Rehman, Habib Ur
    Panyanak, Bancha
    Pakkaranang, Nuttapol
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 249 - 262
  • [6] Accelerated Subgradient Extragradient Methods for Variational Inequality Problems
    Duong Viet Thong
    Nguyen The Vinh
    Cho, Yeol Je
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1438 - 1462
  • [7] Accelerated Subgradient Extragradient Methods for Variational Inequality Problems
    Duong Viet Thong
    Nguyen The Vinh
    Yeol Je Cho
    Journal of Scientific Computing, 2019, 80 : 1438 - 1462
  • [8] Modified subgradient extragradient method for variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    NUMERICAL ALGORITHMS, 2018, 79 (02) : 597 - 610
  • [9] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Okeke, Chibueze C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [10] Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space
    Khan, A. R.
    Ugwunnadi, G. C.
    Makukula, Z. G.
    Abbas, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 327 - 338