LOWER BOUNDS FOR THE NUMBER OF VECTORS WITH ALGEBRAIC COORDINATES NEAR SMOOTH SURFACES

被引:2
作者
Budarina, Nataliya, V [1 ]
Dickinson, Detta [2 ]
Bernik, Vasiliy L. [3 ]
机构
[1] Dundalk Inst Technol, Dublin Rd, Dundalk A91 K584, Ireland
[2] Natl Univ Ireland, Maynooth, Kildare, Ireland
[3] Natl Acad Sci Belarus, Inst Math, 11 Surganov Str, Minsk 220072, BELARUS
来源
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI | 2020年 / 64卷 / 01期
关键词
algebraic numbers; Diophantine approximation; geometry of numbers; DIOPHANTINE APPROXIMATION;
D O I
10.29235/1561-8323-2020-64-1-7-12
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let z = f(x, y) be a surface in three-dimensional Euclidean space. Consider a neighborhood V of this surface, whose points satisfy the inequality vertical bar f (x, y) - z vertical bar < Q(-gamma), where 0 < gamma < 1 and Q is a sufficiently large positive integer. In the works of Huxley, Beresnevich, Velani, the distribution of rational points in V has been started. In this article, we study the distribution of points with real conjugate algebraic coordinates <(alpha)over right arrow> = alpha(1), alpha(2), alpha(3) in V. For some c(1) = c(1)(n), a lower bound is obtained in the form of c(2)Q(n+1-gamma) for the number of algebraic numbers of degree n >= 3 and of height at most c(3)Q.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 10 条
[1]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[2]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[3]   Diophantine approximation on planar curves and the distribution of rational points [J].
Beresnevich, Victor ;
Dickinson, Detta ;
Velani, Sanju ;
Vaughan, R. C. .
ANNALS OF MATHEMATICS, 2007, 166 (02) :367-426
[4]  
Bernik V., POINTS ALGEBRAIC CAL
[5]  
Bernik V., 2017, J MATH SCI, V224, P176
[6]   Distribution of real algebraic numbers of arbitrary degree in short intervals [J].
Bernik, V. I. ;
Goetze, F. .
IZVESTIYA MATHEMATICS, 2015, 79 (01) :18-39
[7]   On algebraic points in the plane near smooth curves [J].
Bernik, Vasilii ;
Goetze, Friedrich ;
Kukso, Olga .
LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (03) :231-251
[8]  
Huxley M. N., 1994, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V21, P357
[9]  
[Коледа Денис Владимирович Koleda Denis Vladimirovich], 2015, [Чебышевский сборник, Chebyshevskii sbornik], V16, P191
[10]  
Sprindzhuk V. G., 1967, Mahler's problem in metric number theory