Realization of in situ doped n-type and p-type Si-microprobe array by selective vapor-liquid-solid (VLS) growth method

被引:15
作者
Islam, MS [1 ]
Ishino, H [1 ]
Kawano, T [1 ]
Takao, H [1 ]
Sawada, K [1 ]
Ishida, M [1 ]
机构
[1] Toyohashi Univ Technol, Dept Elect & Elect Engn, Toyohashi, Aichi 4418580, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2005年 / 44卷 / 4B期
关键词
vapor-liquid-solid (VLS) growth; in situ doping; molecular beam epitaxy (MBE); Si-microprobe array; vertical active devices;
D O I
10.1143/JJAP.44.2161
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper we report the development of n-type and p-type Si-microprobe arrays fabricated by using in situ doping in vapor-liquid-solid, (VLS) growth employing a gas-source molecular beam epitaxy (GS-MBE) system as the growth environment. VLS growth using Si2H6 only gives intrinsic Si microprobes with the resistivity of similar to 10(4) Omega-cm, which decreases to similar to 10-(2) Omega-cm after phosphorous diffusion at 1100 degrees C. However, by incorporating in situ doping into the VLS growth method, more conductive probes (resistivity similar to 10(-3) Omega-cm) can be realized at a temperature less than 700 degrees C. The site and diameter of the VLS-grown probe can be controlled and the growth rate is higher than that of a poly-Si or epitaxial Si crystal grown by the vapor-solid (VS) method. Due to the low processing temperature, in situ doping is effective for realizing highly conductive probe arrays with smart sensor devices by a standard IC process followed by VLS growth. The wide range of doping leads to the possibility of using these probes for the fabrication of vertical active devices such as diodes and transistors.
引用
收藏
页码:2161 / 2165
页数:5
相关论文
共 11 条
[1]   Probe card with probe pins grown by the vapor-liquid-solid (VLS) method [J].
Asai, S ;
Kato, K ;
Nakazaki, N ;
Nakajima, Y .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART A, 1996, 19 (02) :258-267
[2]   Influence of phosphine flow rate on Si growth rate in gas source molecular beam epitaxy [J].
Gao, F ;
Huang, DD ;
Li, JP ;
Lin, YX ;
Kong, MY ;
Sun, DZ ;
Li, JM ;
Lin, LY .
JOURNAL OF CRYSTAL GROWTH, 2000, 220 (04) :461-465
[3]  
IHSIDA M, 1999, P 10 INT C SOL STAT, P866
[4]   Selective vapor-liquid-solid epitaxial growth of micro-SI probe electrode arrays with on-chip MOSFETs on Si(111) substrates [J].
Kawano, T ;
Kato, Y ;
Tani, R ;
Takao, H ;
Sawada, K ;
Ishida, M .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (03) :415-420
[5]   Multichannel 5 x 5-site 3-dimensional Si microprobe electrode array for neural activity recording system [J].
Kawano, T ;
Takao, H ;
Sawada, K ;
Ishida, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (4B) :2473-2477
[6]   Fabrication and properties of ultrasmall Si wire arrays with circuits by vapor-liquid-solid growth [J].
Kawano, T ;
Kato, Y ;
Futagawa, M ;
Takao, H ;
Sawada, K ;
Ishida, M .
SENSORS AND ACTUATORS A-PHYSICAL, 2002, 97-8 :709-715
[7]   PRECISE CONTROL OF GROWTH SITE OF SILICON VAPOR LIQUID-SOLID CRYSTALS [J].
OKAJIMA, Y ;
ASAI, S ;
TERUI, Y ;
TERASAKI, R ;
MURATA, H .
JOURNAL OF CRYSTAL GROWTH, 1994, 141 (3-4) :357-362
[8]   INSITU DOPING OF SI AND SI1-XGEX IN ULTRAHIGH-VACUUM CHEMICAL VAPOR-DEPOSITION [J].
RACANELLI, M ;
GREVE, DW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (04) :2017-2021
[9]   SITE-CONTROLLED GROWTH OF NANOWHISKERS [J].
SATO, T ;
HIRUMA, K ;
SHIRAI, M ;
TOMINAGA, K ;
HARAGUCHI, K ;
KATSUYAMA, T ;
SHIMADA, T .
APPLIED PHYSICS LETTERS, 1995, 66 (02) :159-161
[10]  
SZE SM, 1985, SEMICONDUCTOR DEVICE, P325