On the zero-divisor graph of a ring

被引:107
作者
Anderson, David F. [1 ]
Badawi, Ayman [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
chained rings; linearly ordered prime ideals; phi-rings; zero-divisor graph;
D O I
10.1080/00927870802110888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Gamma(R)=Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy=0. In this article, we study Gamma(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} not equal Nil(R) subset of zR for all z is an element of Z(R)\Nil(R).
引用
收藏
页码:3073 / 3092
页数:20
相关论文
共 34 条
[21]  
Badawi A, 2001, HOUSTON J MATH, V27, P725
[22]  
Badawi A., 2002, INT J COMMUTATIVE RI, V1, P51
[23]  
Badawi A, 2006, HOUSTON J MATH, V32, P1
[24]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[25]  
Bollaboas B., 1979, GRAPH THEORY INTRO C
[26]  
DeMeyer F., 2002, INT J COMMUTATIVE RI, V1, P93
[27]  
DOBBS DE, 1976, PAC J MATH, V67, P253
[28]  
FUCHS L, 1985, MODULES VALUATION DO
[29]   PSEUDO-VALUATION DOMAINS [J].
HEDSTROM, JR ;
HOUSTON, EG .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 75 (01) :137-147
[30]  
Huckaba JA., 1988, COMMUTATIVE RINGS ZE