On the zero-divisor graph of a ring

被引:107
作者
Anderson, David F. [1 ]
Badawi, Ayman [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
chained rings; linearly ordered prime ideals; phi-rings; zero-divisor graph;
D O I
10.1080/00927870802110888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Gamma(R)=Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy=0. In this article, we study Gamma(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} not equal Nil(R) subset of zR for all z is an element of Z(R)\Nil(R).
引用
收藏
页码:3073 / 3092
页数:20
相关论文
共 34 条
[1]  
Anderson DF, 2008, HOUSTON J MATH, V34, P361
[2]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[3]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[4]  
Anderson DF, 2000, B UNIONE MAT ITAL, V3B, P535
[5]  
Anderson DF, 2005, HOUSTON J MATH, V31, P1007
[6]  
Anderson DF, 2004, HOUSTON J MATH, V30, P331
[7]   Zero-divisor graphs, von Neumann regular rings, and Boolean algebras [J].
Anderson, DF ;
Levy, R ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) :221-241
[8]  
Anderson DF, 2001, LECT NOTES PURE APPL, V220, P61
[9]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[10]  
Anderson DF, 2001, ARAB J SCI ENG, V26, P17