Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function

被引:144
作者
Braun, Urs [1 ]
Schaefer, Axel [1 ]
Bassett, Danielle S. [2 ,3 ]
Rausch, Franziska [1 ]
Schweiger, Janina I. [1 ]
Bilek, Edda [1 ]
Erk, Susanne [4 ]
Romanczuk-Seiferth, Nina [4 ]
Grimm, Oliver [1 ]
Geiger, Lena S. [1 ]
Haddad, Leila [1 ]
Otto, Kristina [1 ]
Mohnke, Sebastian [4 ]
Heinz, Andreas [4 ]
Zink, Mathias [1 ]
Walter, Henrik [4 ]
Schwarz, Emanuel [1 ]
Meyer-Lindenberg, Andreas [1 ]
Tost, Heike [1 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, Mannheim, Germany
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[4] Charite, Dept Psychiat & Psychotherapy, Campus Mitte, Berlin, Germany
基金
美国国家科学基金会;
关键词
dynamic network neuroscience; schizophrenia; NMDA receptor function; intermediate phenotype; working memory; METHYL-D-ASPARTATE; TEST-RETEST RELIABILITY; WORKING-MEMORY; COMMUNITY STRUCTURE; NEURONAL DYNAMICS; CONNECTIVITY; HIPPOCAMPAL; DEXTROMETHORPHAN; INTERNEURONS; FMRI;
D O I
10.1073/pnas.1608819113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-D-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.
引用
收藏
页码:12568 / 12573
页数:6
相关论文
共 59 条
[11]   Executive function and genetic predisposition to schizophrenia - The Maudsley Family Study [J].
Birkett, P. ;
Sigmundsson, T. ;
Sharma, T. ;
Toulopoulou, T. ;
Griffiths, T. D. ;
Reveley, A. ;
Murray, R. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2008, 147B (03) :285-293
[12]   Dynamic reconfiguration of frontal brain networks during executive cognition in humans [J].
Braun, Urs ;
Schaefer, Axel ;
Walter, Henrik ;
Erk, Susanne ;
Romanczuk-Seiferth, Nina ;
Haddad, Leila ;
Schweiger, Janina I. ;
Grimm, Oliver ;
Heinz, Andreas ;
Tost, Heike ;
Meyer-Lindenberg, Andreas ;
Bassett, Danielle S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (37) :11678-11683
[13]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[14]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[15]   Wavelets and functional magnetic resonance imaging of the human brain [J].
Bullmore, ET ;
Fadili, J ;
Maxim, V ;
Sendur, L ;
Whitcher, B ;
Suckling, J ;
Brammer, M ;
Breakspear, M .
NEUROIMAGE, 2004, 23 :S234-S249
[16]   Physiological characteristics of capacity constraints in working memory as revealed by functional MRI [J].
Callicott, JH ;
Mattay, VS ;
Bertolino, A ;
Finn, K ;
Coppola, R ;
Frank, JA ;
Goldberg, TE ;
Weinberger, DR .
CEREBRAL CORTEX, 1999, 9 (01) :20-26
[17]   Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state [J].
Cao, Hengyi ;
Plichta, Michael M. ;
Schaefer, Axel ;
Haddad, Leila ;
Grimm, Oliver ;
Schneider, Michael ;
Esslinger, Christine ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas ;
Tost, Heike .
NEUROIMAGE, 2014, 84 :888-900
[18]   A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior [J].
Carlen, M. ;
Meletis, K. ;
Siegle, J. H. ;
Cardin, J. A. ;
Futai, K. ;
Vierling-Claassen, D. ;
Ruehlmann, C. ;
Jones, S. R. ;
Deisseroth, K. ;
Sheng, M. ;
Moore, C. I. ;
Tsai, L-H .
MOLECULAR PSYCHIATRY, 2012, 17 (05) :537-548
[19]   Intrinsic and Task-Evoked Network Architectures of the Human Brain [J].
Cole, Michael W. ;
Bassett, Danielle S. ;
Power, Jonathan D. ;
Braver, Todd S. ;
Petersen, Steven E. .
NEURON, 2014, 83 (01) :238-251
[20]   NMDA Receptor and Schizophrenia: A Brief History [J].
Coyle, Joseph T. .
SCHIZOPHRENIA BULLETIN, 2012, 38 (05) :920-926