General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices

被引:52
作者
Hayman, Matthew [1 ]
Thayer, Jeffrey P. [2 ]
机构
[1] Natl Ctr Atmospher Res, Adv Study Program, Boulder, CO 80307 USA
[2] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
PARTICLE ORIENTATION; LIGHT; DEPOLARIZATION; PARAMETERS; CLOUD;
D O I
10.1364/JOSAA.29.000400
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization's widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retar-dance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation. (C) 2012 Optical Society of America
引用
收藏
页码:400 / 409
页数:10
相关论文
共 43 条
[1]   Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices [J].
Anastasiadou, Makrina ;
Hatit, Sami Ben ;
Ossikovski, Razvigor ;
Guyot, Steve ;
De Martino, Antonello .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2007, 2
[2]  
Bagini V., 1996, European Journal of Physics, V17, P279, DOI 10.1088/0143-0807/17/5/006
[3]   Mueller matrices and information derived from linear polarization lidar measurements: theory [J].
Ben-David, A .
APPLIED OPTICS, 1998, 37 (12) :2448-2463
[4]  
Borne M., 1999, PRINCIPLES OPTICS
[5]   AIRBORNE LIDAR OBSERVATIONS IN THE WINTERTIME ARCTIC STRATOSPHERE - POLAR STRATOSPHERIC CLOUDS [J].
BROWELL, EV ;
BUTLER, CF ;
ISMAIL, S ;
ROBINETTE, PA ;
CARTER, AF ;
HIGDON, NS ;
TOON, OB ;
SCHOEBERL, MR ;
TUCK, AF .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (04) :385-388
[6]   MECHANICS OF POLARIZATION RAY-TRACING [J].
CHIPMAN, RA .
OPTICAL ENGINEERING, 1995, 34 (06) :1636-1645
[7]   Use of polar decomposition for the diagnosis of oral precancer [J].
Chung, Jungrae ;
Jung, Woonggyu ;
Hammer-Wilson, Marie J. ;
Wilder-Smith, Petra ;
Chen, Zhongping .
APPLIED OPTICS, 2007, 46 (15) :3038-3045
[8]   Degree of polarization surfaces and maps for analysis of depolarization [J].
DeBoo, B ;
Sasian, J ;
Chipman, R .
OPTICS EXPRESS, 2004, 12 (20) :4941-4958
[9]   Use of polarimetric lidar for the study of oriented ice plates in clouds [J].
Del Guasta, Massimo ;
Vallar, Edgar ;
Riviere, Olivier ;
Castagnoli, Francesco ;
Venturi, Valerio ;
Morandi, Marco .
APPLIED OPTICS, 2006, 45 (20) :4878-4887
[10]  
Ferreira C., 2006, Monog. Sem. Mat. G. Gald, V33, P115