Brun-Type Formalism for Decoherence in Two-Dimensional Quantum Walks

被引:12
作者
Ampadu, Clement
机构
[1] Boston, MA 02132
关键词
coin-position decoherence; quantum random walk; coin decoherence;
D O I
10.1088/0253-6102/57/1/08
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study decoherence in the quantum walk on the xy-plane. We generalize the method of decoherent coin quantum walk, introduced by [TA. Brun, et al., Phys. Rev. A 67 (2003) 032304], which could be applicable to all sorts of decoherence in two-dimensional quantum walks, irrespective of the unitary transformation governing the walk. As an application we study decoherence in the presence of broken line noise in which the quantum walk is governed by the two-dimensional Hadamard operator.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 29 条
[1]   Decoherent quantum walks driven by a generic coin operation [J].
Abal, G. ;
Donangelo, R. ;
Severo, F. ;
Siri, R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) :335-345
[2]  
Algaic G., 2005, PHYS REV A, V72
[3]   Limit theorems for quantum walks associated with Hadamard matrices [J].
Ampadu, Clement .
PHYSICAL REVIEW A, 2011, 84 (01)
[4]  
Annabestani M., 2010, ARXIV10044352
[5]   Decoherence in a one-dimensional quantum walk [J].
Annabestani, Mostafa ;
Akhtarshenas, Seyed Javad ;
Abolhassani, Mohamad Reza .
PHYSICAL REVIEW A, 2010, 81 (03)
[6]   Discrete Single-Photon Quantum Walks with Tunable Decoherence [J].
Broome, M. A. ;
Fedrizzi, A. ;
Lanyon, B. P. ;
Kassal, I. ;
Aspuru-Guzik, A. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[7]   Quantum to classical transition for random walks [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :130602-130602
[8]   Quantum random walks with decoherent coins [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW A, 2003, 67 (03) :9
[9]   Quantum walks in optical lattices -: art. no. 052319 [J].
Dür, W ;
Raussendorf, R ;
Kendon, VM ;
Briegel, HJ .
PHYSICAL REVIEW A, 2002, 66 (05) :8
[10]  
Fedichkin L, 2006, QUANTUM INF COMPUT, V6, P263