Quantification and Tuning of Surface Oxygen Vacancies for the Hydrogenation of CO2 on Indium Oxide Catalysts

被引:11
作者
Baumgarten, Robert [1 ]
d'Alnoncourt, Raoul Naumann [1 ]
Lohr, Stephen [1 ,2 ]
Gioria, Esteban [1 ]
Frei, Elias [2 ]
Fako, Edvin [2 ]
De, Sandip [2 ]
Boscagli, Chiara [3 ]
Driess, Matthias [1 ,4 ]
Schunk, Stephan [2 ,3 ,5 ]
Rosowski, Frank [1 ,2 ]
机构
[1] Tech Univ Berlin, BasCat UniCat BASF JointLab, D-10623 Berlin, Germany
[2] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
[3] Hte GmbH, Kurpfalzring 104, D-69123 Heidelberg, Germany
[4] Tech Univ Berlin, Inst Chem Metallorgan & Anorgan Mat, Str 17 Juni 135, D-10623 Berlin, Germany
[5] Univ Leipzig, Inst Tech Chem, Linnestr 3, D-04103 Leipzig, Germany
关键词
CO2; Hydrogenation; Indium oxide; Methanol; N2O reactive frontal chromatography; ATOMIC LAYER DEPOSITION; GAS-SHIFT REACTION; METHANOL SYNTHESIS; PROPANE DEHYDROGENATION; LOWER OLEFINS; COPPER; AL2O3; H-2; DEACTIVATION; ADSORPTION;
D O I
10.1002/cite.202200085
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The direct hydrogenation of CO2 to methanol is an attractive approach to employ the greenhouse gas as a chemical feedstock. However, the commercial copper catalyst, used for methanol synthesis from CO-rich syngas, suffers from deactivation at elevated CO2 partial pressure. An emerging alternative is represented by In2O3 as it withstands the hydrothermal conditions induced by the reverse water-gas shift reaction. The active sites for the adsorption of CO2 and the subsequent conversion into methanol were shown to be oxygen vacancies on the surface of In2O3. In this study, N2O was utilized as a probe molecule to quantify the number of vacancies on indium oxide catalysts. The number of inserted oxygen atoms could be correlated to the respective CO2 hydrogenation activity. Furthermore, the atomic efficiency of indium was enhanced by applying atomic layer deposition of indium oxide on ZrO2.
引用
收藏
页码:1765 / 1775
页数:11
相关论文
共 67 条
[1]   Active direct methanol fuel cell: An overview [J].
Alias, M. S. ;
Kamarudin, S. K. ;
Zainoodin, A. M. ;
Masdar, M. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) :19620-19641
[2]   Reverse water-gas shift reaction at the Cu/ZnO interface: Influence of the Cu/Zn ratio on structure-activity correlations [J].
Alvarez Galvan, Consuelo ;
Schumann, Julia ;
Behrens, Malte ;
Garcia Fierro, Jose Luis ;
Schloegl, Robert ;
Frei, Elias .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 195 :104-111
[3]  
[Anonymous], METHANOL ORG METHANO
[4]   Synthesis of High Surface Area-Group 13-Metal Oxides via Atomic Layer Deposition on Mesoporous Silica [J].
Baumgarten, Robert ;
Ingale, Piyush ;
Knemeyer, Kristian ;
Naumann d'Alnoncourt, Raoul ;
Driess, Matthias ;
Rosowski, Frank .
NANOMATERIALS, 2022, 12 (09)
[5]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[6]   Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture [J].
Bos, M. J. ;
Kersten, S. R. A. ;
Brilman, D. W. F. .
APPLIED ENERGY, 2020, 264
[7]   Methanol Synthesis from CO2 Hydrogenation [J].
Bowker, Michael .
CHEMCATCHEM, 2019, 11 (17) :4238-4246
[8]   Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO2 Hydrogenation over In2O3 Surfaces [J].
Cao, Ang ;
Wang, Zhenbin ;
Li, Hao ;
Norskov, Jens K. .
ACS CATALYSIS, 2021, 11 (03) :1780-1786
[9]   Unraveling Highly Tunable Selectivity in CO2 Hydrogenation over Bimetallic In-Zr Oxide Catalysts [J].
Chen, Tian-yuan ;
Cao, Chenxi ;
Chen, Tian-bao ;
Ding, Xiaoxu ;
Huang, Hai ;
Shen, Liang ;
Cao, Xinyu ;
Zhu, Minghui ;
Xu, Jing ;
Gao, Jian ;
Han, Yi-Fan .
ACS CATALYSIS, 2019, 9 (09) :8785-8797
[10]   Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes [J].
Cheng, Ho-Ming ;
Wang, Fu-Ming ;
Chu, Jinn P. ;
Santhanam, Raman ;
Rick, John ;
Lo, Shen-Chuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7629-7637